Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology

Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.

[1]  Francis J Doyle,et al.  A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9 , 2006, Molecular systems biology.

[2]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[5]  Francis J Doyle,et al.  A model of the cell-autonomous mammalian circadian clock , 2009, Proceedings of the National Academy of Sciences.

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  Thomas Thorne,et al.  Model selection in systems and synthetic biology. , 2013, Current opinion in biotechnology.

[8]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[9]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[10]  Zhike Zi,et al.  Robustness Analysis of the IFN-γ Induced JAK-STAT Signaling Pathway , 2005, Journal of Computer Science and Technology.

[11]  Richard J. Morris,et al.  Bayesian Model Comparison and Parameter Inference in Systems Biology Using Nested Sampling , 2014, PloS one.

[12]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[15]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[16]  M. Birnbaum,et al.  Role of Akt/protein kinase B in metabolism , 2002, Trends in Endocrinology & Metabolism.

[17]  Shinya Kuroda,et al.  The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns , 2013 .

[18]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[19]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[20]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[21]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[22]  Kunihiko Kaneko,et al.  Identifying dynamical systems with bifurcations from noisy partial observation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Shinya Kuroda,et al.  Temporal coding of insulin action through multiplexing of the AKT pathway. , 2012, Molecular cell.

[24]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[25]  J. Stark,et al.  Network motifs: structure does not determine function , 2006, BMC Genomics.

[26]  M. Gutmann,et al.  Approximate Bayesian Computation , 2012 .

[27]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Tina Toni,et al.  The ABC of reverse engineering biological signalling systems. , 2009, Molecular bioSystems.

[30]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[31]  Katsuyuki Kunida,et al.  Processive phosphorylation of ERK MAP kinase in mammalian cells , 2011, Proceedings of the National Academy of Sciences.

[32]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[33]  Tina Toni,et al.  Elucidating the in vivo phosphorylation dynamics of the ERK MAP kinase using quantitative proteomics data and Bayesian model selection. , 2012, Molecular bioSystems.

[34]  J. Machta,et al.  Population annealing with weighted averages: a Monte Carlo method for rough free-energy landscapes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Xia Sheng,et al.  Bayesian design of synthetic biological systems , 2011, Proceedings of the National Academy of Sciences.

[36]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[37]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[38]  Tina Toni,et al.  Parameter inference for biochemical systems that undergo a Hopf bifurcation. , 2008, Biophysical journal.

[39]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[40]  F. Allgöwer,et al.  Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. , 2005, Systems biology.

[41]  C Jayaprakash,et al.  A feedforward loop motif in transcriptional regulation: induction and repression. , 2005, Journal of theoretical biology.

[42]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[43]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.

[44]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[45]  H. Philippe,et al.  Computing Bayes factors using thermodynamic integration. , 2006, Systematic biology.

[46]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[47]  S. Takada,et al.  Bayesian Parameter Inference by Markov Chain Monte Carlo with Hybrid Fitness Measures: Theory and Test in Apoptosis Signal Transduction Network , 2013, PloS one.

[48]  Koji Hukushima,et al.  Population Annealing and Its Application to a Spin Glass , 2003 .

[49]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.