Magneto-inertial navigation: principles and application to an indoor pedometer

This thesis presents the magneto-inertial navigation technique (MINAV) using magnetic disturbances and inertial sensors (accelerometers and gyrometers) to address the positioning problem of a rigid body in motion. The manuscript provides design guidelines and procedures enabling the creation of a system implementing this technique in real conditions. An example of operational system, the "magneto-inertial pedometer", providing a GPS-free indoor navigation solution is presented.

[1]  Nicolas Petit,et al.  Navigation system for ground vehicles using temporally interconnected observers , 2011, Proceedings of the 2011 American Control Conference.

[2]  Bengt Carlsson,et al.  Digital differentiation of noisy data measured through a dynamic system , 1992, IEEE Trans. Signal Process..

[3]  Rajesh Rajamani,et al.  Vehicle dynamics and control , 2005 .

[4]  Fernando Seco Granja,et al.  Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.

[5]  Nicolas Petit,et al.  Using magnetic disturbances to improve IMU-based position estimation , 2007, 2007 European Control Conference (ECC).

[6]  Alan Burns,et al.  Real-Time Scheduling for Embedded Systems , 2005, Handbook of Networked and Embedded Control Systems.

[7]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[8]  Rainer Mautz,et al.  Overview of current indoor positioning systems , 2009 .

[9]  Dieter Schmalstieg,et al.  Indoor Positioning and Navigation with Camera Phones , 2009, IEEE Pervasive Computing.

[10]  Isaac Skog,et al.  Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[11]  Nicolas Petit,et al.  The Navigation and Control technology inside the AR.Drone micro UAV , 2011 .

[12]  Václav Peterka,et al.  Predictor-based self-tuning control , 1982, Autom..

[13]  Martin Klepal,et al.  A Backtracking Particle Filter for fusing building plans with PDR displacement estimates , 2008, 2008 5th Workshop on Positioning, Navigation and Communication.

[14]  Carlos Silvestre,et al.  Position and Velocity Navigation Systems for Unmanned Vehicles , 2009, IEEE Transactions on Control Systems Technology.

[15]  Carlos Silvestre,et al.  Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation , 2011, IEEE Transactions on Control Systems Technology.

[16]  James J. Caffery,et al.  Wireless Location in CDMA Cellular Radio Systems , 1999 .

[17]  C. Foster,et al.  Extension of a Non-Linear, Two-Step Calibration Methodology to Include Non-Orthogonal Sensor Axes , 2006 .

[18]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[19]  A. Berthoz,et al.  The nonholonomic nature of human locomotion: a modeling study , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[20]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[21]  Nicolas Petit,et al.  Using distributed magnetometry in navigation of heavy launchers and space vehicles , 2013 .

[22]  Robert E. Mahony,et al.  Attitude estimation on SO[3] based on direct inertial measurements , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[23]  P. Olver Nonlinear Systems , 2013 .

[24]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[25]  Demoz Gebre-Egziabher,et al.  A Non-linear , Two-step Estimation Algorithm for Calibrating Solid-state Strapdown Magnetometers , 2001 .

[26]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[27]  Klaus C. J. Dietmayer,et al.  Global positioning using a digital map and an imaging radar sensor , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[28]  N. Tsyganenko,et al.  A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure , 2002 .

[29]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[30]  J. Lenz,et al.  Magnetic sensors and their applications , 2006, IEEE Sensors Journal.

[31]  Agus Budiyono,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[32]  M. Hua Contributions au contrôle automatique de véhicules aériens , 2009 .

[33]  F. Gustafsson,et al.  Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements , 2005, IEEE Signal Processing Magazine.

[34]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[35]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[36]  Abdelmoumen Norrdine,et al.  Position estimation using artificial generated magnetic fields , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[37]  Donald Launer,et al.  Navigation through the Ages , 2009, Nature.

[38]  Carlos Silvestre,et al.  Sensor-based complementary globally asymptotically stable filters for attitude estimation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[39]  Bengt Carlsson,et al.  Optimal differentiation based on stochastic signal models , 1991, IEEE Trans. Signal Process..

[40]  Ram Dantu,et al.  Magnetic Maps for Indoor Navigation , 2011, IEEE Transactions on Instrumentation and Measurement.

[41]  Wolfgang Förstner,et al.  The estimation of spatial positions by using an omnidirectional camera system , 2010 .

[42]  Alberto L. Sangiovanni-Vincentelli,et al.  Platform-based embedded software design and system integration for autonomous vehicles , 2003, Proc. IEEE.

[43]  Kavitha Muthukrishnan,et al.  SLAM for Pedestrians and Ultrasonic Landmarks in Emergency Response Scenarios , 2011, Adv. Comput..

[44]  Tarek Hamel,et al.  EditorialIntroduction to the special issue on aerial robotics , 2010 .

[45]  J. Rigelsford,et al.  Magnetic Sensors and Magnetometers , 2002 .

[46]  Minh-Duc Hua Attitude observers for accelerated rigid bodies based on GPS and INS measurements , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[47]  M.H. Francis,et al.  RFID-assisted indoor localization and communication for first responders , 2006, 2006 First European Conference on Antennas and Propagation.

[48]  Christopher Jekeli,et al.  Precision free-inertial navigation with gravity compensation by an onboard gradiometer , 2006 .

[49]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[50]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[51]  Andrew Y. C. Nee,et al.  Methods for in-field user calibration of an inertial measurement unit without external equipment , 2008 .

[52]  Mohammed El-Diasty,et al.  A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors , 2009, Sensors.

[53]  Bernard Mettler,et al.  Identification Modeling and Characteristics of Miniature Rotorcraft , 2002 .

[54]  J. Gomes,et al.  Robotic ocean vehicles for marine science applications: the European ASIMOV project , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[55]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[56]  Nicolas Petit,et al.  Design of a navigation filter by analysis of local observability , 2010, 49th IEEE Conference on Decision and Control (CDC).

[57]  Dominik Aufderheide,et al.  Towards real-time camera egomotion estimation and three-dimensional scene acquisition from monocular image streams , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[58]  Nicolas Petit,et al.  Combining inertial measurements and distributed magnetometry for motion estimation , 2011, Proceedings of the 2011 American Control Conference.

[59]  Iaga Division,et al.  Revision of International Geomagnetic Reference Field released , 1996 .

[60]  E Dorveaux,et al.  On-the-field calibration of an array of sensors , 2010, Proceedings of the 2010 American Control Conference.

[61]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[62]  J. Borenstein,et al.  Non-GPS Navigation for Security Personnel and First Responders , 2007, Journal of Navigation.

[63]  W. P. Olson,et al.  A quantitative model of the magnetospheric magnetic field , 1974 .

[64]  David Vissière,et al.  Solution de guidage-navigation-pilotage pour véhicules autonomes hétérogènes en vue d'une mission collaborative , 2008 .

[65]  David Elliott,et al.  Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .

[66]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[67]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  J. N. Lyness The Euler Maclaurin expansion for the Cauchy Principal Value integral , 1985 .

[70]  Phillip Tomé,et al.  Indoor Navigation of Emergency Agents , 2007 .

[71]  Michael J. Rycroft,et al.  Understanding GPS. Principles and Applications , 1997 .

[72]  Sebastian Tilch,et al.  Survey of optical indoor positioning systems , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[73]  Muhammad Haris Afzal,et al.  Use of Earth's Magnetic Field for Pedestrian Navigation , 2011 .

[74]  D. Elliott The Euler-Maclaurin formula revisited , 1998 .

[75]  Carlos Silvestre,et al.  Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[76]  A. B. Chatfield Fundamentals of high accuracy inertial navigation , 1997 .

[77]  Valérie Renaudin,et al.  Complete Triaxis Magnetometer Calibration in the Magnetic Domain , 2010, J. Sensors.

[78]  Ayob Sharif Gps Satellite Orbit Integration by the Gauss-Jackson Process , 1992 .

[79]  Nicolas Petit,et al.  Iterative calibration method for inertial and magnetic sensors , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[80]  William F Storms,et al.  Magnetic Field Aided Indoor Navigation , 2012 .

[81]  Nicolas Petit,et al.  Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter , 2010 .

[82]  A. Chulliat,et al.  International Geomagnetic Reference Field: the eleventh generation , 2010 .

[83]  Library of Congress Cataloging-in-Publication Data , 2020 .

[84]  M. Saponara,et al.  In-Flight Results from the Drag-Free and Attitude Control of GOCE Satellite , 2011 .

[85]  Nicolas Petit,et al.  Harmonization of a multi-sensor navigation system , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[86]  H. Vincent Poor,et al.  Position Estimation via Ultra-Wide-Band Signals , 2008, Proceedings of the IEEE.

[87]  T. Hamel,et al.  Complementary filter design on the special orthogonal group SO(3) , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[88]  Sylvie Lamy-Perbal,et al.  An improved shoe-mounted inertial navigation system , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[89]  R. Barnard,et al.  Inequalities for the Perimeter of an Ellipse , 2001 .

[90]  Isaac Skog,et al.  Calibration of a MEMS inertial measurement unit , 2006 .