The evolution of visual cortex: where is V2?

[1]  L. Krubitzer,et al.  Organization of visual cortex in the northern quoll, Dasyurus hallucatus: evidence for a homologue of the second visual area in marsupials , 1999, The European journal of neuroscience.

[2]  J. Kaas,et al.  Cortical connections of striate and extrastriate visual areas in tree shrews , 1998, The Journal of comparative neurology.

[3]  M. Paolini,et al.  Direction selectivity in the middle lateral and lateral (ML and L) visual areas in the California ground squirrel. , 1998, Cerebral cortex.

[4]  D. Mouchiroud,et al.  Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. , 1997, Molecular phylogenetics and evolution.

[5]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[6]  Paul L. Abel,et al.  The distribution of callosal connections correlates with the pattern of cytochrome oxidase stripes in visual area V2 of macaque monkeys. , 1996, Cerebral cortex.

[7]  R. C. Van Sluyters,et al.  Overall pattern of callosal connections in visual cortex of normal and enucleated cats , 1995, The Journal of comparative neurology.

[8]  L. Krubitzer The organization of neocortex in mammals: are species differences really so different? , 1995, Trends in Neurosciences.

[9]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[10]  M G Rosa,et al.  Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus , 1994, Visual Neuroscience.

[11]  J. Boyd,et al.  Tangential organization of callosal connectivity in the cat's visual cortex , 1994, The Journal of comparative neurology.

[12]  A. Burkhalter,et al.  Hierarchical organization of areas in rat visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  M Mishkin,et al.  A role for the corpus callosum in visual area V4 of the macaque , 1993, Visual Neuroscience.

[14]  M. Novacek,et al.  Mammalian phytogeny: shaking the tree , 1992, Nature.

[15]  D. Price,et al.  Organization of association projections from area 17 to areas 18 and 19 and to suprasylvian areas in the cat's visual cortex , 1992, The Journal of comparative neurology.

[16]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[17]  V. Montero,et al.  Elaborate organization of visual cortex in the hamster , 1990, Neurosciences research.

[18]  R. Malach,et al.  Patterns of connections in rat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  J. Kaas,et al.  Cortical connections of areas 17 (V‐I) and 18 (V‐II) of squirrels , 1989, The Journal of comparative neurology.

[20]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[21]  R. C. Van Sluyters,et al.  The overall pattern of ocular dominance bands in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  S. Espinoza,et al.  Relationships between interhemispheric cortical connections and visual areas in hooded rats , 1987, Brain Research.

[23]  G M Innocenti,et al.  Maturation of visual callosal connections in visually deprived kittens: a challenging critical period , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. Kaas,et al.  Cortical connections of area 17 in tree shrews , 1984, The Journal of comparative neurology.

[25]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  S. Espinoza,et al.  Retinotopic organization of striate and extrastriate visual cortex in the hooded rat , 1983, Brain Research.

[27]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[28]  V. Lemmon,et al.  Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse , 1982, The Journal of comparative neurology.

[29]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[30]  Gerald H. Jacobs,et al.  Spatial contrast sensitivity in albino and pigmented rats , 1979, Vision Research.

[31]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[32]  J. Olavarria,et al.  The representations of the visual field on the posterior cortex of Octodon degus , 1979, Brain Research.

[33]  T. Branchek,et al.  Refractive state and visual acuity in the hooded rat , 1976, Vision Research.

[34]  C. Blakemore,et al.  Functional organization in the visual cortex of the golden hamster , 1976, The Journal of comparative neurology.

[35]  C. Rocha-Miranda,et al.  Receptive field properties of single units in the opossum striate cortex , 1976, Brain Research.

[36]  U. Dräger,et al.  Receptive fields of single cells and topography in mouse visual cortex , 1975, The Journal of comparative neurology.

[37]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[38]  W. C. Hall,et al.  Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. , 1972, Brain research.

[39]  W. C. Hall,et al.  Cortical visual areas in the grey squirrel (Sciurus carolinesis): a correlation between cortical evoked potential maps and architectonic subdivisions. , 1971, Journal of neurophysiology.

[40]  W. C. Hall,et al.  Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. , 1970, Journal of neurophysiology.

[41]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[42]  J. Pettigrew,et al.  Organization of the second visual area in the megachiropteran bat Pteropus. , 1994, Cerebral cortex.

[43]  L. M. Schmid,et al.  Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapulatus). , 1993, The Journal of comparative neurology.

[44]  S. Espinoza,et al.  Retinotopic organization of striate and extrastriate visual cortex in the golden hamster (Mesocricetus auratus). , 1992, Biological research.

[45]  C. Rocha-Miranda,et al.  Patterns of cytochrome oxidase activity in the visual cortex of a South American opossum (Didelphis marsupialis aurita). , 1990, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[46]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.