The tamed unadjusted Langevin algorithm

[1]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[2]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[3]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[4]  S. Glotzer,et al.  Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.

[5]  Lester W. Mackey,et al.  Measuring Sample Quality with Diffusions , 2016, The Annals of Applied Probability.

[6]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[7]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[8]  L. C. G. Rogers,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES (North‐Holland Mathematical Library, 24) , 1982 .

[9]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[10]  Gabriel Stoltz,et al.  Partial differential equations and stochastic methods in molecular dynamics* , 2016, Acta Numerica.

[11]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Jonathan C. Mattingly,et al.  An adaptive Euler–Maruyama scheme for SDEs: convergence and stability , 2006, math/0601029.

[13]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[14]  E. Pardoux,et al.  On the Poisson Equation and Diffusion Approximation. I Dedicated to N. v. Krylov on His Sixtieth Birthday , 2001 .

[15]  Cédric Villani,et al.  Stability of optimal transport , 2009 .

[16]  Chaman Kumar,et al.  On Milstein approximations with varying coefficients: the case of super-linear diffusion coefficients , 2016, BIT Numerical Mathematics.

[17]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[18]  Andrew M. Stuart,et al.  Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..

[19]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[20]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[21]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[22]  É. Moulines,et al.  Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.

[23]  M. Kopec Weak backward error analysis for overdamped Langevin processes , 2013, 1310.2404.

[24]  G. Parisi Correlation functions and computer simulations (II) , 1981 .

[25]  Djalil CHAFAÏ,et al.  Central limit theorems for additive functionals of ergodic Markov diffusions processes , 2011, 1104.2198.

[26]  G. Roberts,et al.  Kinetic energy choice in Hamiltonian/hybrid Monte Carlo , 2017, Biometrika.

[27]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[28]  A. Eberle Couplings, distances and contractivity for diffusion processes revisited , 2013 .

[29]  Xiaojie Wang,et al.  The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients , 2011, 1102.0662.

[30]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[31]  Arnak S. Dalalyan,et al.  Sparse Regression Learning by Aggregation and Langevin Monte-Carlo , 2009, COLT.

[32]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[33]  Alain Durmus,et al.  High-dimensional Bayesian inference via the unadjusted Langevin algorithm , 2016, Bernoulli.

[34]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[35]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[36]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[37]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[38]  E. Vanden-Eijnden,et al.  Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.

[39]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[40]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[41]  S. Sabanis A note on tamed Euler approximations , 2013, 1303.5504.

[42]  A. Dalalyan Theoretical guarantees for approximate sampling from smooth and log‐concave densities , 2014, 1412.7392.

[43]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[44]  Sean P. Meyn,et al.  A Liapounov bound for solutions of the Poisson equation , 1996 .

[45]  Chaman Kumar,et al.  On tamed milstein schemes of SDEs driven by Lévy noise , 2014, 1407.5347.

[46]  M. Hutzenthaler,et al.  Numerical Approximations of Stochastic Differential Equations With Non-globally Lipschitz Continuous Coefficients , 2012, 1203.5809.

[47]  J. L. Gall,et al.  Brownian Motion, Martingales, and Stochastic Calculus , 2016 .

[48]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .