Low-cost accelerometers for robotic manipulator perception

We present a series of experiments which explore the use of consumer-grade accelerometers as joint position sensors for robotic manipulators. We show that 6- and 7-dof joint angle estimation is possible by using one 3-d accelerometer for each pair of joints. We demonstrate two calibration approaches and experimental results using accelerometer-based control in both position-control and torque-control regimes. We present a manipulator design combining accelerometer-based sensing with low-cost actuation, and conclude by demonstrating the utility of consumer-grade accelerometers even on high-precision manipulators.

[1]  John M. Hollerbach,et al.  Kinematic calibration by means of a triaxial accelerometer , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[3]  Youfu Li,et al.  End-point sensing and state observation of a flexible-link robot , 2001 .

[4]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[5]  Ashutosh Saxena,et al.  Robotic Grasping of Novel Objects using Vision , 2008, Int. J. Robotics Res..

[6]  Manuela Veloso,et al.  Learning from accelerometer data on a legged robot , 2004 .

[7]  Oliver Brock,et al.  The UMass Mobile Manipulator UMan: An Experimental Platform for Autonomous Mobile Manipulation , 2006 .

[8]  Keyvan Hashtrudi-Zaad,et al.  An accelerometer-based joint angle sensor for heavy-duty manipulators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Advait Jain,et al.  A clickable world: Behavior selection through pointing and context for mobile manipulation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Jessica K. Hodgins,et al.  Action capture with accelerometers , 2008, SCA '08.

[11]  Jer-Nan Juang,et al.  Joint position sensor fault tolerance in robot systems using Cartesian accelerometers , 1996 .

[12]  Eric Foxlin,et al.  VIS-Tracker: a wearable vision-inertial self-tracker , 2003, IEEE Virtual Reality, 2003. Proceedings..

[13]  Maja J. Mataric,et al.  Motion capture from inertial sensing for untethered humanoid teleoperation , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[14]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[15]  Jorge Angeles,et al.  Pose-and-twist estimation of a rigid body using accelerometers , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[17]  Grantham K. H. Pang,et al.  Accelerometer for mobile robot positioning , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[18]  John Kenneth Salisbury,et al.  Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[19]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..