Infinitesimal perturbation analysis based optimization for a manufacturing-remanufacturing system

In this paper, a manufacturing/ remanufacturing system composed by two parallel machines, a manufacturing buffer, a recovery buffer and a customer who demands a constant quantity of product. To describe the system, a stochastic fluid model is adopted and which take into account returned products and remanufacturing products. The objective of this paper is to evaluate the optimal manufacturing buffer. This optimal level allows minimizing the total cost which is the sum of inventory and lost sales costs. Infinitesimal perturbation analysis is used for optimization of the manufacturing/ remanufacturing system. The trajectories of the buffer level are studied and the infinitesimal perturbation analysis estimates are evaluated. These estimates are shown to be unbiased and then they are implemented in an optimization algorithm which determines the optimal buffers levels in the presence of returned products and remanufacturing products.

[1]  Stanley B. Gershwin,et al.  Modeling and Analysis of Markovian Continuous Flow Production Systems with a Finite Buffer: A General Methodology and Applications , 2007 .

[2]  Markus Klausner,et al.  Reverse-Logistics Strategy for Product Take-Back , 2000, Interfaces.

[3]  Christoforos Panayiotou,et al.  Optimization of discrete event system parameters using SFM-based infinitesimal perturbation analysis estimates , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  Nathalie Sauer,et al.  Perturbation analysis for continuous and discrete flow models: a study of the delivery time impact on the optimal buffer level , 2013 .

[5]  Turki Sadok,et al.  INFINITESIMAL PERTURBATION ANALYSIS FOR OPTIMIZATION OF TWO-PRODUCT-MANUFACTURING SYSTEM , 2011 .

[6]  Christos G. Cassandras,et al.  Perturbation Analysis and Optimization of Stochastic Hybrid Systems , 2010, Eur. J. Control.

[7]  Christos G. Cassandras,et al.  Perturbation analysis for online control and optimization of stochastic fluid models , 2002, IEEE Trans. Autom. Control..

[8]  B. Porter,et al.  Evolutionary optimisation of hedging points for unreliable manufacturing systems , 2006 .

[9]  Yorai Wardi,et al.  Continuous flow models: modeling, simulation and continuity properties , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  Mohamed Mohamed Naim,et al.  Dynamic performance of a hybrid inventory system with a Kanban policy in remanufacturing process , 2006 .

[11]  Rommert Dekker,et al.  Inventory Control in Hybrid Systems with Remanufacturing , 1999 .

[12]  Christos G. Cassandras,et al.  Using infinitesimal perturbation analysis of stochastic flow models to recover performance sensitivity estimates of discrete event systems , 2012, Discret. Event Dyn. Syst..

[13]  Simme Douwe P. Flapper,et al.  Managing closed-loop supply chains , 2005 .

[14]  R. Akella,et al.  Optimal control of production rate in a failure prone manufacturing system , 1985, 1985 24th IEEE Conference on Decision and Control.

[15]  Albert Corominas,et al.  Optimal manufacturing-remanufacturing policies in a lean production environment , 2008, Comput. Ind. Eng..

[16]  Christos G. Cassandras,et al.  Perturbation analysis and control of two-class stochastic fluid models for communication networks , 2003, IEEE Trans. Autom. Control..

[17]  Xi-Ren Cao,et al.  Perturbation analysis and optimization of queueing networks , 1983 .

[18]  Alessandro Giua,et al.  IPA for continuous stochastic marked graphs , 2013, Autom..

[19]  Weibo Gong,et al.  Ill-conditioned performance functions of queueing systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[20]  Y. Wardi,et al.  Multi-process control using queuing theory , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[21]  Michael Manitz,et al.  Queueing-model based analysis of assembly lines with finite buffers and general service times , 2008, Comput. Oper. Res..

[22]  Christos G. Cassandras,et al.  Infinitesimal Perturbation Analysis and Optimization for Make-to-Stock Manufacturing Systems Based on Stochastic Fluid Models , 2006, Discret. Event Dyn. Syst..