Distributed multirobot localization

In this paper, we present a new approach to the problem of simultaneously localizing a group of mobile robots capable of sensing one another. Each of the robots collects sensor data regarding its own motion and shares this information with the rest of the team during the update cycles. A single estimator, in the form of a Kalman filter, processes the available positioning information from all the members of the team and produces a pose estimate for every one of them. The equations for this centralized estimator can be written in a decentralized form, therefore allowing this single Kalman filter to be decomposed into a number of smaller communicating filters. Each of these filters processes the sensor data collected by its host robot. Exchange of information between the individual filters is necessary only when two robots detect each other and measure their relative pose. The resulting decentralized estimation schema, which we call collective localization, constitutes a unique means for fusing measurements collected from a variety of sensors with minimal communication and processing requirements. The distributed localization algorithm is applied to a group of three robots and the improvement in localization accuracy is presented. Finally, a comparison to the equivalent decentralized information filter is provided.

[1]  Douglas W. Gage Minimum-resource distributed navigation and mapping , 2001, SPIE Optics East.

[2]  Maja J. Mataric,et al.  Territorial multi-robot task division , 1998, IEEE Trans. Robotics Autom..

[3]  Stergios I. Roumeliotis,et al.  Collective localization: a distributed Kalman filter approach to localization of groups of mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Gregory Dudek,et al.  On Multiagent Exploration , 1998 .

[5]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Johann Borenstein,et al.  Experimental results from internal odometry error correction with the OmniMate mobile robot , 1998, IEEE Trans. Robotics Autom..

[7]  Wolfram Burgard,et al.  Collaborative Multi-Robot Localization , 1999, DAGM-Symposium.

[8]  Jay A. Farrell,et al.  A comparison of state space, range space, and carrier phase differential GPS/INS relative navigation , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[9]  Christiaan J. J. Paredis,et al.  Heterogeneous Teams of Modular Robots for Mapping and Exploration , 2000, Auton. Robots.

[10]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[11]  Gaurav S. Sukhatme,et al.  Smoother based 3D attitude estimation for mobile robot localization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Hobart R. Everett,et al.  Sensors for Mobile Robots , 1995 .

[13]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[14]  Stergios I. Roumeliotis,et al.  Robust mobile robot localization: from single-robot uncertainties to multi-robot interdependencies , 2000 .

[15]  Stergios I. Roumeliotis,et al.  "Small-World" Networks of Mobile Robots , 2000, AAAI/IAAI.

[16]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[17]  Jing Wang,et al.  Relative position localizing system for multiple autonomous mobile robots in distributed robotic system: System design and simulation , 1996, Robotics Auton. Syst..

[18]  Hugh F. Durrant-Whyte,et al.  Decentralized Architecture for Asynchronous Sensors , 1999, Auton. Robots.

[19]  J. Borenstein Internal Correction of Dead-reckoning Errors With a Dual-drive Compliant Linkage Mobile Robot , 1995 .

[20]  Clark F. Olson,et al.  Maximum likelihood rover localization by matching range maps , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[21]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[22]  Wolfram Burgard,et al.  Monte Carlo Localization with Mixture Proposal Distribution , 2000, AAAI/IAAI.

[23]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[24]  Yoshikazu Arai,et al.  Realization of autonomous navigation in multirobot environment , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[25]  Ryo Kurazume,et al.  An Experimental Study of a Cooperative Positioning System , 2000, Auton. Robots.

[26]  Arthur C. Sanderson,et al.  A distributed algorithm for cooperative navigation among multiple mobile robots , 1997, Adv. Robotics.

[27]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[28]  Gaurav S. Sukhatme,et al.  Sensor fault detection and identification in a mobile robot , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[29]  Johann Borenstein,et al.  Intemal correction of dead-reckoning errors with a dual-drive compliant linkage mobil robot , 1995, J. Field Robotics.

[30]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[31]  C. Leondes,et al.  Advances in Control Systems , 1966 .

[32]  Ryo Kurazume,et al.  Study on cooperative positioning system (basic principle and measurement experiment) , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[33]  Lynne E. Parker,et al.  Current State of the Art in Distributed Autonomous Mobile Robotics , 2000 .

[34]  Jun Ota,et al.  Multirobot motion coordination in space and time , 1998, Robotics Auton. Syst..

[35]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[36]  Maja J. Mataric,et al.  Multi-robot target acquisition using multiple objective behavior coordination , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[37]  Johann Borenstein Control and kinematic design of multi-degree-of freedom mobile robots with compliant linkage , 1995, IEEE Trans. Robotics Autom..

[38]  H. W. Sorenson,et al.  Kalman Filtering Techniques , 1966 .

[39]  Ryo Kurazume,et al.  Study on cooperative positioning system: optimum moving strategies for CPS-III , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[40]  A.G.O. Mutambara,et al.  State and information space estimation: a comparison , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).