Machine learning and automated theorem proving

[1]  Matthias Fuchs,et al.  High Performance ATP Systems by Combining Several AI Methods , 1997, IJCAI.

[2]  Marko Grobelnik,et al.  Feature Selection Using Linear Support Vector Machines , 2002 .

[3]  Johann Schumann,et al.  An Empirical Evaluation of Automated Theorem Provers in Software Certification , 2013, Int. J. Artif. Intell. Tools.

[4]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[5]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[6]  Yde Venema Review: Maria Manzano, Extensions of First Order Logic , 1998 .

[7]  Christoph Goller Learning search-control heuristics for automated deduction systems with folding architecture networks , 1999, ESANN.

[8]  Hongbo Li,et al.  Automated Theorem Proving in Incidence Geometry - A Bracket Algebra Based Elimination Method , 2000, Automated Deduction in Geometry.

[9]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[10]  Matthias Fuchs,et al.  Applying Case-Based Reasoning to Automated Deduction , 1997, ICCBR.

[11]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[12]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[13]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[14]  Jörg Denzinger,et al.  DISCOUNT - A Distributed and Learning Equational Prover , 2004, Journal of Automated Reasoning.

[15]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[16]  Larry Wos,et al.  OTTER and the Moufang identity problem , 1996, Journal of Automated Reasoning.

[17]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[18]  Larry Wos,et al.  The Concept of Demodulation in Theorem Proving , 1967, JACM.

[19]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[20]  Lawrence C. Paulson,et al.  Automation for interactive proof: First prototype , 2006, Inf. Comput..

[21]  Jia Meng Integration of Interactive and Automatic Provers , 2003 .

[22]  Monty Newborn,et al.  Octopus: Combining Learning and Parallel Search , 2004, Journal of Automated Reasoning.

[23]  María Manzano,et al.  Extensions of First-Order Logic , 1996 .

[24]  Donald W. Loveland,et al.  Mechanical Theorem-Proving by Model Elimination , 1968, JACM.

[25]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[26]  Jean H. Gallier,et al.  Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .

[27]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[28]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[29]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[30]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[31]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[32]  John McCarthy,et al.  Programs with common sense , 1960 .

[33]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[34]  Neil Immerman,et al.  Simulating Reachability Using First-Order Logic with Applications to Verification of Linked Data Structures , 2005, CADE.

[35]  F. Wiedijk The Seventeen Provers of the World , 2006 .

[36]  Reiner Hähnle,et al.  Verification of Hardware Systems with First-Order Logic , 2002 .

[37]  Johann Schumann,et al.  Automated Theorem Proving in High-Quality Software Design , 2013, Intellectics and Computational Logic.

[38]  Lawrence C. Paulson,et al.  Experiments on Supporting Interactive Proof Using Resolution , 2004, IJCAR.

[39]  Andrei Voronkov,et al.  Algorithms, Datastructures, and other Issues in Efficient Automated Deduction , 2001, IJCAR.

[40]  Albert B Novikoff,et al.  ON CONVERGENCE PROOFS FOR PERCEPTRONS , 1963 .

[41]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[42]  Christoph Benzmüller,et al.  Learning Method Outlines in Proof Planning , 2001 .

[43]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[44]  Bernard Mourrain,et al.  An Application of Automatic Theorem Proving in Computer Vision , 1998, Automated Deduction in Geometry.

[45]  Christoph Walther,et al.  A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.

[46]  Matthias Fuchs Automatic Selection of Search-guiding Heuristics for Theorem Proving , 1998 .

[47]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[48]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[49]  M. Kaufman Some Key Research Problems in Automated Theorem Proving for Hardware and Software Verification , 2004 .

[50]  C. Wernhard,et al.  Using Mathematica and Automated Theorem Provers to Access a Mathematical Library ? , 1998 .

[51]  J. A. Robinson,et al.  Theorem-Proving on the Computer , 1963, JACM.

[52]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[53]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[54]  Cesare Tinelli A DPLL-Based Calculus for Ground Satisfiability Modulo Theories , 2002, JELIA.

[55]  Viktor Kuncak,et al.  Using First-Order Theorem Provers in the Jahob Data Structure Verification System , 2007, VMCAI.

[56]  Christoph Walther A Mechanical Solution of Schubert's Steamroller by Many-Sorted Resolution , 1984, AAAI.

[57]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[58]  Felix Brandt,et al.  Using Term Space Maps to Capture Search Control Knowledge in Equational Theorem Proving , 1999, FLAIRS.

[59]  Michael Beeson A Tour through Mathematical Logic by Robert S. Wolf , 2006, Am. Math. Mon..

[60]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[61]  Aladdin M. Yaqub An Introduction to Non-Classical Logic , 2010 .

[62]  Mark Ryan,et al.  Logic in Computer Science: Contents , 2004 .

[63]  Feng Jiang,et al.  Regularized F-Measure Maximization for Feature Selection and Classification , 2009, Journal of biomedicine & biotechnology.

[64]  Katharina Morik,et al.  Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring , 1999, ICML.

[65]  Larry Wos,et al.  The Flowering of Automated Reasoning , 2005, Mechanizing Mathematical Reasoning.

[66]  Josef Urban,et al.  MaLARea: a Metasystem for Automated Reasoning in Large Theories , 2007, ESARLT.

[67]  C. Goller,et al.  Learning from Previous Proof Experience: A Survey , 1999 .

[68]  Christel Baier,et al.  Principles of model checking , 2008 .

[69]  William McCune,et al.  Solution of the Robbins Problem , 1997, Journal of Automated Reasoning.

[70]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[71]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[72]  E. Davis,et al.  Common Sense Reasoning , 2014, Encyclopedia of Social Network Analysis and Mining.

[73]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[74]  A. Ayer The Identity of Indiscernibles , 1954 .

[75]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[76]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[77]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[78]  Ernie Cohen TAPS: a first-order verifier for cryptographic protocols , 2000, Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13.

[79]  Peter Smith,et al.  An Introduction to Gödel's Theorems , 2007 .

[80]  I. Hacking The Identity of Indiscernibles , 1975 .

[81]  Lawrence C. Paulson,et al.  Lightweight relevance filtering for machine-generated resolution , 2006 .

[82]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[83]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[84]  Andrei Voronkov,et al.  Splitting Without Backtracking , 2001, IJCAI.

[85]  H. Ganzinger,et al.  Equational Reasoning in Saturation-Based Theorem Proving , 1998 .

[86]  Stephan Schulz,et al.  Learning search control knowledge for equational deduction , 2000, DISKI.

[87]  A. Mycroft,et al.  Knowledge-Representation and Scalable Abstract Reasoning for Sentient Computing using First-Order Logic , 2022 .

[88]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[89]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[90]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..