Evaluation of Proteomic Data: From Profiling to Network Analysis by Way of Biomarker Discovery

[1]  R. Aebersold,et al.  Increased Selectivity, Analytical Precision, and Throughput in Targeted Proteomics , 2010, Molecular & Cellular Proteomics.

[2]  Daehee Hwang,et al.  From proteomics toward systems biology: integration of different types of proteomics data into network models. , 2008, BMB reports.

[3]  Rune Matthiesen,et al.  Algorithms for database-dependent search of MS/MS data. , 2013, Methods in molecular biology.

[4]  Pierluigi Mauri,et al.  MudPIT analysis of released proteins in Pseudomonas aeruginosa laboratory and clinical strains in relation to pro-inflammatory effects. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[5]  Vinh Nguyen,et al.  Visual Integration of Quantitative Proteomic Data, Pathways, and Protein Interactions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  Ruedi Aebersold,et al.  Mass spectrometric protein maps for biomarker discovery and clinical research , 2013, Expert review of molecular diagnostics.

[7]  Giancarlo Mauri,et al.  Availability of MudPIT data for classification of biological samples , 2013, Journal of Clinical Bioinformatics.

[8]  Susumu Goto,et al.  Systems biology approaches and pathway tools for investigating cardiovascular disease. , 2009, Molecular bioSystems.

[9]  Gennifer E. Merrihew,et al.  Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. , 2010, Analytical chemistry.

[10]  Brendan MacLean,et al.  Skyline: an open source document editor for creating and analyzing targeted proteomics experiments , 2010, Bioinform..

[11]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[12]  R. Aebersold,et al.  Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions , 2012, Nature Methods.

[13]  Tony J. Parker,et al.  A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches , 2011, PloS one.

[14]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[15]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[16]  Juan Astorga-Wells,et al.  Rapid and Deep Human Proteome Analysis by Single-dimension Shotgun Proteomics* , 2013, Molecular & Cellular Proteomics.

[17]  Bin Ma,et al.  Software for computational peptide identification from MS-MS data. , 2006, Drug discovery today.

[18]  Robertson Craig,et al.  The use of proteotypic peptide libraries for protein identification. , 2005, Rapid communications in mass spectrometry : RCM.

[19]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[20]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[21]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[22]  Lennart Martens,et al.  XTandem Parser: An open‐source library to parse and analyse X!Tandem MS/MS search results , 2010, Proteomics.

[23]  Jennifer A Mead,et al.  MRMaid, the Web-based Tool for Designing Multiple Reaction Monitoring (MRM) Transitions* , 2009, Molecular & Cellular Proteomics.

[24]  Gary D. Bader,et al.  clusterMaker: a multi-algorithm clustering plugin for Cytoscape , 2011, BMC Bioinformatics.

[25]  Tao Xu,et al.  Bioinformatics Applications Note Sequence Analysis Xdia: Improving on the Label-free Data-independent Analysis , 2022 .

[26]  Yang Liu,et al.  VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies , 2013, Nucleic Acids Res..

[27]  Pierluigi Mauri,et al.  A proteomic approach to the analysis of RNA degradosome composition in Escherichia coli. , 2008, Methods in enzymology.

[28]  Giampaolo Merlini,et al.  Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. , 2012, Blood.

[29]  Magnus Palmblad,et al.  Mass spectrometry in clinical proteomics – from the present to the future , 2008, Proteomics. Clinical applications.

[30]  P. Pevzner,et al.  PepNovo: de novo peptide sequencing via probabilistic network modeling. , 2005, Analytical chemistry.

[31]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[32]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[33]  Steven C Hall,et al.  Acid-catalyzed oxygen-18 labeling of peptides. , 2009, Analytical chemistry.

[34]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[35]  Lukas N. Mueller,et al.  SuperHirn – a novel tool for high resolution LC‐MS‐based peptide/protein profiling , 2007, Proteomics.

[36]  Jens Allmer,et al.  Algorithms for the de novo sequencing of peptides from tandem mass spectra , 2011, Expert review of proteomics.

[37]  Beixi Wang,et al.  New ionization processes and applications for use in mass spectrometry , 2013, Critical reviews in biochemistry and molecular biology.

[38]  Christoph H Borchers,et al.  MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum , 2014, Expert review of proteomics.

[39]  J. Yates,et al.  Protein analysis by shotgun/bottom-up proteomics. , 2013, Chemical reviews.

[40]  Allan Kuchinsky,et al.  Mosaic: making biological sense of complex networks , 2012, Bioinform..

[41]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[42]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[43]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[44]  Phillip C. Wright,et al.  An insight into iTRAQ: where do we stand now? , 2012, Analytical and Bioanalytical Chemistry.

[45]  Valmir Carneiro Barbosa,et al.  PatternLab for proteomics: a tool for differential shotgun proteomics , 2008, BMC Bioinformatics.

[46]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[47]  Bruno Domon,et al.  Targeted proteomics strategy applied to biomarker evaluation , 2013, Proteomics. Clinical applications.

[48]  Nan Wang,et al.  ProtQuant: a tool for the label-free quantification of MudPIT proteomics data , 2007, BMC Bioinformatics.

[49]  S. Lee,et al.  Metabolic network modeling and simulation for drug targeting and discovery , 2012, Biotechnology journal.

[50]  Paul Dowling,et al.  Recent advances in clinical proteomics using mass spectrometry. , 2010, Bioanalysis.

[51]  Chao Zhang,et al.  NOA: a cytoscape plugin for network ontology analysis , 2013, Bioinform..

[52]  J. Garin,et al.  Isotope dilution strategies for absolute quantitative proteomics. , 2009, Journal of proteomics.

[53]  D. Catalucci,et al.  A comparative MudPIT analysis identifies different expression profiles in heart compartments , 2011, Proteomics.

[54]  Damon May,et al.  MRMer, an Interactive Open Source and Cross-platform System for Data Extraction and Visualization of Multiple Reaction Monitoring Experiments*S⃞ , 2008, Molecular & Cellular Proteomics.

[55]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[56]  John R Yates,et al.  Mass spectrometry in high-throughput proteomics: ready for the big time , 2010, Nature Methods.

[57]  Giampaolo Merlini,et al.  Shotgun protein profile of human adipose tissue and its changes in relation to systemic amyloidoses. , 2013, Journal of proteome research.

[58]  Jacob D. Jaffe,et al.  MapQuant: Open‐source software for large‐scale protein quantification , 2006, Proteomics.

[59]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[60]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[61]  Gary D Bader,et al.  A travel guide to Cytoscape plugins , 2012, Nature Methods.

[62]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[63]  Sung Kyu Park,et al.  A quantitative analysis software tool for mass spectrometry–based proteomics , 2008, Nature Methods.

[64]  Giovanni Scardoni,et al.  Analyzing biological network parameters with CentiScaPe , 2009, Bioinform..

[65]  Lars Malmström,et al.  A Computational Tool to Detect and Avoid Redundancy in Selected Reaction Monitoring , 2012, Molecular & Cellular Proteomics.

[66]  Damon May,et al.  Open-source platform for the analysis of liquid chromatography-mass spectrometry (LC-MS) data. , 2008, Methods in molecular biology.

[67]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[68]  Luis Mendoza,et al.  MaRiMba: a software application for spectral library-based MRM transition list assembly. , 2009, Journal of proteome research.

[69]  Michaela Scigelova,et al.  Multidimensional protein identification technology for clinical proteomic analysis , 2009, Clinical chemistry and laboratory medicine.

[70]  Christoph H. Borchers,et al.  Mass spectrometry based biomarker discovery, verification, and validation — Quality assurance and control of protein biomarker assays , 2014, Molecular oncology.

[71]  M. Mann,et al.  Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma , 2012, Molecular systems biology.

[72]  M. Mann,et al.  MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. , 2010, Journal of proteome research.

[73]  G. Andriole,et al.  Prostate cancer: to screen or not to screen? , 2009, The Urologic clinics of North America.

[74]  Kai Pong Law,et al.  Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring , 2013, Expert review of proteomics.

[75]  Pavel A. Pevzner,et al.  De Novo Peptide Sequencing via Tandem Mass Spectrometry , 1999, J. Comput. Biol..

[76]  Giampaolo Merlini,et al.  Clinical proteomics for diagnosis and typing of systemic amyloidoses , 2013, Proteomics. Clinical applications.

[77]  Robert Wilson,et al.  Sensitivity and specificity: twin goals of proteomics assays. Can they be combined? , 2013, Expert review of proteomics.

[78]  K. Strimbu,et al.  What are biomarkers? , 2010, Current opinion in HIV and AIDS.

[79]  Y. Mechref,et al.  ProteinQuant Suite: a bundle of automated software tools for label-free quantitative proteomics. , 2008, Rapid communications in mass spectrometry : RCM.

[80]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[81]  Kelvin H Lee,et al.  Shotgun proteomics using the iTRAQ isobaric tags. , 2006, Briefings in functional genomics & proteomics.

[82]  R. Aebersold,et al.  mProphet: automated data processing and statistical validation for large-scale SRM experiments , 2011, Nature Methods.

[83]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[84]  A. Scarpa,et al.  Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  J. Xuan,et al.  Classification algorithms for phenotype prediction in genomics and proteomics. , 2008, Frontiers in bioscience : a journal and virtual library.

[86]  Alexander Schmidt,et al.  Critical assessment of proteome‐wide label‐free absolute abundance estimation strategies , 2013, Proteomics.

[87]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[88]  Bin Ma,et al.  PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification* , 2011, Molecular & Cellular Proteomics.

[89]  Alexander Scherl,et al.  Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues , 2014, Proteomics.

[90]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[91]  Jacob D. Jaffe,et al.  PEPPeR, a Platform for Experimental Proteomic Pattern Recognition*S , 2006, Molecular & Cellular Proteomics.

[92]  R. Aebersold,et al.  Perspectives of targeted mass spectrometry for protein biomarker verification. , 2009, Current opinion in chemical biology.

[93]  John R Yates,et al.  Proteomics by mass spectrometry: approaches, advances, and applications. , 2009, Annual review of biomedical engineering.