Reproducibility of in-vivo 1 electrophysiological measurements 2 in mice 3

20 Understanding whole-brain-scale electrophysiological recordings will rely on the collective work 21 of multiple labs. Because two labs recording from the same brain area often reach different 22 conclusions, it is critical to quantify and control for features that decrease reproducibility. To 23 address these issues, we formed a multi-lab collaboration using a shared, open-source 24 behavioral task and experimental apparatus. We repeatedly inserted Neuropixels multi-electrode 25

[1]  J. Aggleton,et al.  No evidence from complementary data sources of a direct projection from the mouse anterior cingulate cortex to the hippocampal formation , 2022, bioRxiv.

[2]  Anne E. Urai,et al.  Large-scale neural recordings call for new insights to link brain and behavior , 2022, Nature Neuroscience.

[3]  Timothy M. Errington,et al.  Investigating the replicability of preclinical cancer biology , 2021, eLife.

[4]  J. Vogelstein,et al.  Moving Beyond Processing and Analysis-Related Variation in Neuroscience , 2021, bioRxiv.

[5]  Michael N. Economo,et al.  Accurate Localization of Linear Probe Electrode Arrays across Multiple Brains , 2021, eNeuro.

[6]  Richard J. Gardner,et al.  Grid-cell modules remain coordinated when neural activity is dissociated from external sensory cues , 2021, Neuron.

[7]  Edward A. B. Horrocks,et al.  Creating and controlling visual environments using BonVision , 2021, eLife.

[8]  Anne E. Urai,et al.  Large-scale neural recordings call for new insights to link brain and behavior , 2021, Nature Neuroscience.

[9]  Yazan N. Billeh,et al.  Survey of spiking in the mouse visual system reveals functional hierarchy , 2021, Nature.

[10]  Kenneth D. Harris,et al.  Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings , 2020, Science.

[11]  Nicholas A. Roy,et al.  Mice alternate between discrete strategies during perceptual decision-making , 2020, bioRxiv.

[12]  N. Altman,et al.  Reproducibility of animal research in light of biological variation , 2020, Nature Reviews Neuroscience.

[13]  L. Ng,et al.  The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas , 2020, Cell.

[14]  Fanny Cazettes,et al.  Standardized and reproducible measurement of decision-making in mice , 2020, bioRxiv.

[15]  Nicholas B. Turk-Browne,et al.  The hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis , 2019, Vision Research.

[16]  Eric Shea-Brown,et al.  A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex , 2019, Nature Neuroscience.

[17]  Liu D Liu Painting Neuropixels probes and other silicon probes for electrophysiological recordings v1 , 2019, protocols.io.

[18]  Nicholas A. Steinmetz,et al.  Distributed coding of choice, action, and engagement across the mouse brain , 2019, Nature.

[19]  Timothy E. J. Behrens,et al.  Human Replay Spontaneously Reorganizes Experience , 2019, Cell.

[20]  Kevin M. Cury,et al.  DeepLabCut: markerless pose estimation of user-defined body parts with deep learning , 2018, Nature Neuroscience.

[21]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[22]  Leon A. Gatys,et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images , 2017, bioRxiv.

[23]  György Buzsáki,et al.  Physiological Properties and Behavioral Correlates of Hippocampal Granule Cells and Mossy Cells , 2017, Neuron.

[24]  Kenneth D. Harris,et al.  Fast and accurate spike sorting of high-channel count probes with KiloSort , 2016, NIPS.

[25]  Liam Paninski,et al.  Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses , 2016, ICLR.

[26]  Thomas J. Wills,et al.  Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse , 2016, Current Biology.

[27]  Thomas E. Nichols,et al.  Best practices in data analysis and sharing in neuroimaging using MRI , 2017, Nature Neuroscience.

[28]  M. Baker 1,500 scientists lift the lid on reproducibility , 2016, Nature.

[29]  Naoshige Uchida,et al.  Demixed principal component analysis of neural population data , 2014, eLife.

[30]  Andres D. Grosmark,et al.  Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences , 2016, Science.

[31]  Mriganka Sur,et al.  Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions , 2016, eLife.

[32]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[33]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[34]  Conor Liston,et al.  Projections from neocortex mediate top-down control of memory retrieval , 2015, Nature.

[35]  D. Hassabis,et al.  Hippocampal place cells construct reward related sequences through unexplored space , 2015, eLife.

[36]  Matthew T. Kaufman,et al.  A category-free neural population supports evolving demands during decision-making , 2014, Nature Neuroscience.

[37]  Gonçalo Lopes,et al.  Bonsai: an event-based framework for processing and controlling data streams , 2014, bioRxiv.

[38]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[39]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[40]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[41]  A. Pouget,et al.  Variance as a Signature of Neural Computations during Decision Making , 2011, Neuron.

[42]  G. Dragoi,et al.  Preplay of future place cell sequences by hippocampal cellular assemblies , 2011, Nature.

[43]  E. S. Ruthazer,et al.  A Developmental Sensitive Period for Spike Timing-Dependent Plasticity in the Retinotectal Projection , 2010, Front. Syn. Neurosci..

[44]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[45]  Suramya Tomar,et al.  Converting video formats with FFmpeg , 2006 .

[46]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[47]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[48]  G. Buzsáki,et al.  Feed‐forward and feed‐back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts , 1998, Hippocampus.

[49]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[50]  G Buzsáki,et al.  Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. , 1995, Journal of neurophysiology.

[51]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[52]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[53]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[54]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[55]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .