Reconfigurable Agent Architecture for Robots Utilising Cloud Computing

The paper presents the general architecture of the control system of a companion robot. As companion robots have to perform diverse and complex tasks, while computational capabilities of the local robot control computer are limited, the control system is split between the robot and the cloud. Moreover, the system is composed of agents, that are arranged into an application on demand of the user. Some of those agents are created on the robot and some in the cloud. As the requirements change the composition of the system changes too.

[1]  Yoav Shoham Agent-Oriented Programming , 1993, Artif. Intell..

[2]  Michael Winikoff,et al.  Developing intelligent agent systems - a practical guide , 2004, Wiley series in agent technology.

[3]  Alexei Makarenko,et al.  Towards component-based robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[5]  Cezary Zielinski,et al.  Specification of Robotic Systems on an Example of Visual Servoing , 2012, SyRoCo.

[6]  Moritz Tenorth,et al.  KnowRob: A knowledge processing infrastructure for cognition-enabled robots , 2013, Int. J. Robotics Res..

[7]  Reid G. Simmons,et al.  Robotic Systems Architectures and Programming , 2008, Springer Handbook of Robotics, 2nd Ed..

[8]  Moritz Tenorth,et al.  Representation and Exchange of Knowledge About Actions, Objects, and Environments in the RoboEarth Framework , 2013, IEEE Transactions on Automation Science and Engineering.

[9]  C. Zielinski The MRROC++ system , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[10]  Moritz Tenorth,et al.  The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[11]  Odest Chadwicke Jenkins,et al.  Rosbridge: ROS for Non-ROS Users , 2011, ISRR.

[12]  Moritz Tenorth,et al.  KNOWROB — knowledge processing for autonomous personal robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Issa A. D. Nesnas,et al.  The CLARAty Project: Coping with Hardware and Software Heterogeneity , 2005, PPSDR@ICRA.

[14]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[15]  Cezary Zielinski,et al.  Motion Generation in the MRROC++ Robot Programming Framework , 2010, Int. J. Robotics Res..

[16]  Nicholas R. Jennings,et al.  On agent-based software engineering , 2000, Artif. Intell..

[17]  Davide Brugali Sidebar - Middlewares for Distributed Computing , 2005, PPSDR@ICRA.

[18]  Alexei Makarenko,et al.  Orca: A Component Model and Repository , 2005, PPSDR@ICRA.

[19]  Antonio Cisternino,et al.  Trends in Robotic Software Frameworks , 2005, PPSDR@ICRA.

[20]  Herman Bruyninckx,et al.  Open robot control software: the OROCOS project , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[21]  Cezary Zielinski,et al.  Design of asynchronously stimulated robot behaviours , 2013, 9th International Workshop on Robot Motion and Control.

[22]  Herman Bruyninckx,et al.  The real-time motion control core of the Orocos project , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[24]  Cezary Zielinski,et al.  A systematic method of designing control systems for service and field robots , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[25]  Davide Brugali,et al.  Software Engineering for Experimental Robotics , 2007 .

[26]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[27]  Richard T. Vaughan,et al.  Reusable Robot Software and the Player/Stage Project , 2005, PPSDR@ICRA.

[28]  Cezary Zielinski,et al.  Control and programming of a multi-robot-based reconfigurable fixture , 2013, Ind. Robot.

[29]  Pieter Abbeel,et al.  Image Object Label 3 D CAD Model Candidate Grasps Google Object Recognition Engine Google Cloud Storage Select Feasible Grasp with Highest Success Probability Pose EstimationCamera Robots Cloud 3 D Sensor , 2014 .

[30]  Cezary Zielinski,et al.  Robot Control System Design Exemplified by Multi-Camera Visual Servoing , 2015, J. Intell. Robotic Syst..

[31]  Robert L. Grossman,et al.  The Case for Cloud Computing , 2009, IT Professional.

[32]  Juan-Carlos Cano,et al.  HOP: achieving efficient anonymity in MANETs by combining HIP, OLSR, and pseudonyms , 2006, OOPSLA 2006.

[33]  C. Zielinski,et al.  General specification of multi-robot control system structures , 2010 .

[34]  Manuel Serrano,et al.  Multitier programming in Hop , 2012, CACM.

[35]  Pericles A. Mitkas,et al.  RAPP System Architecture , 2014, IROS 2014.