A Bayesian General Linear Modeling Approach to Cortical Surface fMRI Data Analysis

Abstract Cortical surface functional magnetic resonance imaging (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI. In addition to offering better whole-brain visualization, dimension reduction, removal of extraneous tissue types, and improved alignment of cortical areas across subjects, it is also more compatible with common assumptions of Bayesian spatial models. However, as no spatial Bayesian model has been proposed for cs-fMRI data, most analyses continue to employ the classical general linear model (GLM), a “massive univariate” approach. Here, we propose a spatial Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to model latent activation fields. We make several advances compared with existing spatial Bayesian models for volumetric fMRI. First, we use integrated nested Laplacian approximations, a highly accurate and efficient Bayesian computation technique, rather than variational Bayes. To identify regions of activation, we utilize an excursions set method based on the joint posterior distribution of the latent fields, rather than the marginal distribution at each location. Finally, we propose the first multi-subject spatial Bayesian modeling approach, which addresses a major gap in the existing literature. The methods are very computationally advantageous and are validated through simulation studies and two task fMRI studies from the Human Connectome Project. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

[1]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[2]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[3]  Joshua Carp,et al.  The secret lives of experiments: Methods reporting in the fMRI literature , 2012, NeuroImage.

[4]  J. S. Rao,et al.  Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection , 2003 .

[5]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[6]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[7]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[8]  David Bolin,et al.  A comparison between Markov approximations and other methods for large spatial data sets , 2013, Comput. Stat. Data Anal..

[9]  David Bolin,et al.  Fast Bayesian whole-brain fMRI analysis with spatial 3D priors , 2016, NeuroImage.

[10]  F. Lindgren,et al.  Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy , 2013, 1304.6949.

[11]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[12]  Martin A. Lindquist,et al.  A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies , 2014, NeuroImage.

[13]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[14]  C Gössl,et al.  Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging , 2001, Biometrics.

[15]  Martin A. Lindquist,et al.  Estimating and testing variance components in a multi-level GLM , 2012, NeuroImage.

[16]  Jonathan Marchini,et al.  Comparing methods of analyzing fMRI statistical parametric maps , 2004, NeuroImage.

[17]  L. Fahrmeir,et al.  Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging , 2007 .

[18]  Martin A. Lindquist,et al.  Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression , 2012, 1206.6674.

[19]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[20]  Karl J. Friston,et al.  Diffusion-based spatial priors for functional magnetic resonance images , 2008, NeuroImage.

[21]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[22]  Marina Vannucci,et al.  Bayesian models for functional magnetic resonance imaging data analysis , 2014 .

[23]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[24]  R. Adler The Geometry of Random Fields , 2009 .

[25]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[26]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[27]  Martin A. Lindquist,et al.  Adaptive spatial smoothing of fMRI images , 2010 .

[28]  J B Poline,et al.  Analysis of Individual Positron Emission Tomography Activation Maps by Detection of High Signal-to-Noise-Ratio Pixel Clusters , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[30]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[31]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[32]  Anjali Krishnan,et al.  Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations , 2014, NeuroImage.

[33]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[34]  William D. Penny,et al.  Bayesian fMRI data analysis with sparse spatial basis function priors , 2007, NeuroImage.

[35]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[36]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[37]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[38]  F. Lindgren,et al.  Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.

[39]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[40]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[41]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[42]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[43]  M. Lindquist,et al.  Essentials of Functional Neuroimaging , 2009 .

[44]  Lawrence L. Wald,et al.  Impacting the effect of fMRI noise through hardware and acquisition choices – Implications for controlling false positive rates , 2017, NeuroImage.

[45]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[46]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[47]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[48]  Dani Gamerman,et al.  Bayesian spatiotemporal model of fMRI data , 2010, NeuroImage.

[49]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[50]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[51]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[52]  F. Lindgren,et al.  Excursion and contour uncertainty regions for latent Gaussian models , 2012, 1211.3946.

[53]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[54]  E. Seneta,et al.  Studies in the History of Probability and Statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality: A historical note on I. J. Bienaymé , 1972 .

[55]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[56]  Hans Knutsson,et al.  Does Parametric Fmri Analysis with Spm Yield Valid Results? -an Empirical Study of 1484 Rest Datasets Does Parametric Fmri Analysis with Spm Yield Valid Results? - an Empirical Study of 1484 Rest Datasets , 2022 .

[57]  David Bolin,et al.  Calculating probabilistic excursion sets and related quantities using excursions , 2016, 1612.04101.

[58]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[59]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[60]  Bo Wang,et al.  Inadequacy of interval estimates corresponding to variational Bayesian approximations , 2005, AISTATS.

[61]  Martin A. Lindquist,et al.  Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling , 2009, NeuroImage.

[62]  Colin Clark,et al.  ZEN AND THE ART , 2009 .

[63]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[64]  Haavard Rue,et al.  Bayesian Computing with INLA: A Review , 2016, 1604.00860.

[65]  Amanda F. Mejia,et al.  Zen and the Art of Multiple Comparisons , 2015, Psychosomatic medicine.

[66]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[67]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[68]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[69]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[70]  Yu Yue,et al.  Nonstationary Spatial Gaussian Markov Random Fields , 2010 .

[71]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[72]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[73]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[74]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[75]  Finn Lindgren,et al.  Bayesian computing with INLA: New features , 2012, Comput. Stat. Data Anal..