NP and mathematics – a computational complexity perspective

The P versus NP question distinguished itself as the central question of theoretical computer science nearly four decades ago. The quest to resolve it, and more generally, to understand the power and limits of efficient computation, has led to the development of computational complexity theory. While this mathematical discipline in general, and the P vs. NP problem in particular, have gained prominence within the mathematics community in the past decade, it is still largely viewed as a problem of computer science. In this paper I shall try to explain why this problem, and others in computational complexity, are not only mathematical problems but also problems about mathematics, faced by the working mathematician. I shall describe the underlying concepts and problems, the attempts to understand and solve them, and some of the research directions this led us to. I shall explain some of the important results, as well as the major goals and conjectures which still elude us. All this will hopefully give a taste of the motivations, richness and interconnectedness of our field. I shall conclude with a few non computational problems, which capture P vs. NP and related computational complexity problems, hopefully inviting more mathematicians to attack them as well. I believe it important to give many examples, and to underlie the intuition (and sometimes, philosophy) behind definitions and results. This may slow the pace of this article for some, in the hope to make it clearer to others.

[1]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[2]  Russell Impagliazzo,et al.  A personal view of average-case complexity , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[3]  ChallengesPaul ZimmermannInria Lorrainezimmermann Polynomial Factorization , 1996 .

[4]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[5]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[6]  J. Lagarias,et al.  The number of Reidemeister moves needed for unknotting , 1998, math/9807012.

[7]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[8]  W. Thurston,et al.  The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.

[9]  Andrew Granville,et al.  It is easy to determine whether a given integer is prime , 2004 .

[10]  S. Smale Mathematical problems for the next century , 1998 .

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  Lance Fortnow,et al.  The Role of Relativization in Complexity Theory , 1994, Bull. EATCS.

[13]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[14]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[15]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[16]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[17]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[18]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[19]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[20]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[21]  Avi Wigderson,et al.  Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..

[22]  L. Fortnow,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.

[23]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[24]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[25]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[26]  Avi Wigderson,et al.  Efficient Identification Schemes Using Two Prover Interactive Proofs , 1989, CRYPTO.

[27]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[28]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[29]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[30]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[31]  Sanjeev Arora Probabilistic checking of proofs and hardness of approximation problems , 1995 .

[32]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[33]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[34]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[35]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[36]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[37]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[38]  M. Gromov,et al.  Random walk in random groups , 2003 .

[39]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[40]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[41]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[42]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[43]  Alexander A. Razborov Resolution lower bounds for perfect matching principles , 2004, J. Comput. Syst. Sci..

[44]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[45]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[46]  Ran Raz,et al.  Regular resolution lower bounds for the weak pigeonhole principle , 2001, STOC '01.

[47]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[48]  N. V. Vinodchandran AMexp⊈(NP∩coNP)/poly , 2004 .

[49]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[50]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[51]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[52]  Stephen A. Cook,et al.  Review: Alan Cobham, Yehoshua Bar-Hillel, The Intrinsic Computational Difficulty of Functions , 1969 .

[53]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[54]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[55]  Oded Goldreich,et al.  Notes on Levin's Theory of Average-Case Complexity , 1997, Studies in Complexity and Cryptography.

[56]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[57]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[58]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[59]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[60]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[61]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[62]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[63]  R. Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, Symposium on the Theory of Computing.

[64]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[65]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[66]  A. O. Houcine On hyperbolic groups , 2006 .

[67]  R. Impagliazzo,et al.  P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma , 2002 .

[68]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[69]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[70]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[71]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[72]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[73]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[74]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[75]  Alexander A. Razborov,et al.  Lower bounds for the polynomial calculus , 1998, computational complexity.

[76]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[77]  Christos H. Papadimitriou,et al.  NP-Completeness: A Retrospective , 1997, ICALP.

[78]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[79]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .

[80]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[81]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[82]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[83]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[84]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[85]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[86]  László Babai,et al.  E-mail and the unexpected power of interaction , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[87]  Michael Sipser,et al.  The history and status of the P versus NP question , 1992, STOC '92.

[88]  Juris Hartmanis,et al.  Gödel, von Neumann and the P =? NP Problem , 1989, Current Trends in Theoretical Computer Science.

[89]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[90]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[91]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[92]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[93]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..