A Consideration of the Biological and Psychological Foundations of Autonomous Robotics

The new wave of robotics aims to provide robots with the capacity to learn, develop and evolve in interaction with their environments using biologically inspired techniques. This work is placed in perspective by considering its biological and psychological basis with reference to some of the grand theorists of living systems. In particular, we examine what it means to have a body by outlining theories of the mechanisms of bodily integration in multicellular organisms and their means of solidarity with the environment. We consider the implications of not having a living body for current ideas on robot learning, evolution, and cognition and issue words of caution about wishful attributions that can smuggle more into observations of robot behaviour than is scientifically supportable. To round off the arguments we take an obligatory swipe at ungrounded artificial intelligence but quickly move on to assess physical grounding and embodiment in terms of the rooted cognition of the living.

[1]  Noel E. Sharkey,et al.  Grounding computational engines , 1996, Artificial Intelligence Review.

[2]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[3]  Thomas S. Collett,et al.  Rapid Navigational Learning in Insects with a Short Lifespan , 1998, Connect. Sci..

[4]  E. Russell,et al.  The Orientation of Animals , 1941, Nature.

[5]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[6]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[7]  Dave Cliff,et al.  Co-evolution of pursuit and evasion II: Simulation Methods and results , 1996 .

[8]  José del R. Millán,et al.  Rapid, safe, and incremental learning of navigation strategies , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Michael Wheeler,et al.  Cognition's Coming Home: the Reunion of Life and Mind , 1997 .

[10]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[11]  D. Thompson Forced Movements, Tropisms, and Animal Conduct , 1919, Nature.

[12]  G. Fraenkel,et al.  The Orientation of Animals, Kineses, Taxes and Compass Reactions, , 1941 .

[13]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[14]  McDermottDrew Artificial intelligence meets natural stupidity , 1976 .

[15]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[16]  Claude F. Touzet,et al.  Neural reinforcement learning for behaviour synthesis , 1997, Robotics Auton. Syst..

[17]  Tony J. Prescott,et al.  A Robot Trace Maker: Modeling the Fossil Evidence of Early Invertebrate Behavior , 1997, Artificial Life.

[18]  Wilhelm von Waldeyer-Hartz Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems , 1891 .

[19]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[20]  Tom Ziemke,et al.  Adaptive Behavior in Autonomous Agents , 1998, Presence.

[21]  F. Gamble Umwelt und Innenwelt der Tiere , 1910, Nature.

[22]  Richard S. Sutton,et al.  Temporal credit assignment in reinforcement learning , 1984 .

[23]  Henrik Hautop Lund,et al.  Evolving and Breeding Robots , 1998, EvoRobot.

[24]  Neil Burgess,et al.  Using a Mobile Robot to Test a Model of the Rat Hippocampus , 1998, Connect. Sci..

[25]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[26]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[27]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[28]  Tony Savage,et al.  Shaping: The Link Between Rats and Robots , 1998, Connect. Sci..

[29]  E. Thorndike “Animal Intelligence” , 1898, Nature.

[30]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[31]  H. Dreyfus What Computers Can't Do: The Limits of Artificial Intelligence , 1978 .

[32]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[33]  Patrick van der Smagt Cerebellar Control of Robot Arms , 1998, Connect. Sci..

[34]  Rodney A. Brooks,et al.  Achieving Artificial Intelligence through Building Robots , 1986 .

[35]  Tom Ziemke Towards Adaptive Behaviour System Integration using Connectionist Infinite State Automata , 1996 .

[36]  R. F. Tredgold,et al.  The Living Brain , 1954, Mental Health.

[37]  Lisa Meeden,et al.  An incremental approach to developing intelligent neural network controllers for robots , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[38]  F. Waismann The Logical Calculus , 1997 .

[39]  Stefano Nolfi,et al.  Learning to Adapt to Changing Environments in Evolving Neural Networks , 1996, Adapt. Behav..

[40]  Francesco Mondada,et al.  Evolutionary neurocontrollers for autonomous mobile robots , 1998, Neural Networks.

[41]  Marco Colombetti,et al.  Robot Shaping: Developing Autonomous Agents Through Learning , 1994, Artif. Intell..

[42]  Stefano Nolfi,et al.  Evolving non-trivial behaviors on real robots: A garbage collecting robot , 1997, Robotics Auton. Syst..

[43]  Dave Cliff,et al.  Challenges in evolving controllers for physical robots , 1996, Robotics Auton. Syst..

[44]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[45]  Franz Huber,et al.  Neural Correlates of Orthopteran and Cicada Phonotaxis , 1983 .

[46]  Hiroshi Kobayashi,et al.  An Autonomous Agent Navigating with a Polarized Light Compass , 1997, Adapt. Behav..

[47]  Fred Keijzer,et al.  Some armchair worries about wheeled behavior , 1998 .

[48]  Roger D. Quinn,et al.  Construction of a Hexapod Robot with Cockroach Kinematics Benefits both Robotics and Biology , 1998, Connect. Sci..

[49]  Noel E. Sharkey,et al.  Artificial neural networks for coordination and control: The portability of experiential representations , 1997, Robotics Auton. Syst..

[50]  Inman Harvey Cognition is Not Computation; Evolution is Not Optimisation , 1997, ICANN.

[51]  B. Skinner Two Types of Conditioned Reflex and a Pseudo Type , 1935 .

[52]  Stefano Nolfi,et al.  Evolutionary Robotics: Exploiting the Full Power of Self-organization , 1998, Connect. Sci..

[53]  G. Dorffner,et al.  Connectionism, Symbol Grounding, and Autonomous Agents , 1993 .

[54]  A. S. Etienne Mammalian Navigation, Neural Models and Biorobotics , 1998, Connect. Sci..

[55]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[56]  K. D. Roeder,et al.  Ultrasonic reception by the tympanic organ of noctuid moths. , 1957, The Journal of experimental zoology.

[57]  W. Smith The Integrative Action of the Nervous System , 1907, Nature.

[58]  Piero Mussio,et al.  Toward a Practice of Autonomous Systems , 1994 .

[59]  Maurice Merleau-Ponty,et al.  The Structure of Behaviour , 1965 .

[60]  Tony J. Prescott,et al.  Explorations in Reinforcement and Model-based Learning , 1994 .

[61]  H. Schlosberg,et al.  The relationship between success and the laws of conditioning. , 1937 .

[62]  Phil Husbands,et al.  Better Living Through Chemistry: Evolving GasNets for Robot Control , 1998, Connect. Sci..

[63]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[64]  Jean-Arcady Meyer,et al.  Evolution and Development of Modular Control Architectures for 1D Locomotion in Six-legged Animats , 1998, Connect. Sci..

[65]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[66]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[67]  Jonathan H. Connell,et al.  Minimalist mobile robotics - a colony-style architecture for an artificial creature , 1990, Perspectives in artificial intelligence.

[68]  E. Brunswik,et al.  The Conceptual Framework of Psychology , 1954 .

[69]  Barbara Webb,et al.  A Robot Attracted to the Cricket Species Gryllus bimaculatus , 1997 .

[70]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[71]  Barbara Webb,et al.  Using robots to model animals: a cricket test , 1995, Robotics Auton. Syst..

[72]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[73]  P. Smolensky THE CONSTITUENT STRUCTURE OF CONNECTIONIST MENTAL STATES: A REPLY TO FODOR AND PYLYSHYN , 2010 .

[74]  Barbara Webb,et al.  Physical and Temporal Scaling Considerations in a Robot Model of Cricket Calling Song Preference , 1997, Artificial Life.

[75]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[76]  Jelliffe Forced Movements, Tropisms, and Animal Conduct , 1919 .

[77]  D. Bray,et al.  Origins of individual swimming behavior in bacteria. , 1998, Biophysical journal.

[78]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[79]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[80]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[81]  L. Miller Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound , 1971 .

[82]  Stewart W. Wilson The animat path to AI , 1991 .

[83]  D. Floreano,et al.  Adaptive Behavior in Competing Co-Evolving Species , 2000 .

[84]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[85]  Ben J. A. Kröse,et al.  Distributed adaptive control: The self-organization of structured behavior , 1992, Robotics Auton. Syst..

[86]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[87]  R. Nelson,et al.  Visual Navigation , 1996 .

[88]  Tom Ziemke The `Environmental Puppeteer' Revisited: A Connectionist Perspective on Autonomy´. , 1997 .

[89]  David S. Touretzky,et al.  Shaping robot behavior using principles from instrumental conditioning , 1997, Robotics Auton. Syst..

[90]  John Hallam,et al.  Evolving robot morphology , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[91]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[92]  T. Ziemke,et al.  Rethinking Grounding , 1997 .

[93]  Erich Prem,et al.  Epistemic Autonomy in Models of Living Systems , 1997 .

[94]  David J. Chalmers,et al.  Subsymbolic Computation and the Chinese Room , 1992 .

[95]  Noel E. Sharkey,et al.  Learning from Innate Behaviors: A Quantitative Evaluation of Neural Network Controllers , 2004, Machine Learning.

[96]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .