Multilevel computational processes for visual surface reconstruction

Abstract A computational theory of visual surface reconstruction is presented. This theory extends in a natural way the multilevel structure of the earliest processing stages in vision to later stages that reconstruct full, retinocentric surface representations from local information about surface shape at scattered locations. The surface reconstruction problem is formulated as a variational principle describing the equilibria of a thin flexible plate. Optimal discrete approximations to the variational principle are obtained via the finite element method which utilizes local (finite element) representations of surfaces. The resulting discrete problem takes the form of a large, sparse system of linear equations. A multilevel algorithm for quickly solving a hierarchy of discrete problems is described and its performance is demonstrated by examples involving depth constraints from stereopsis.

[1]  K. Rektorys Variational Methods in Mathematics, Science and Engineering , 1977 .

[2]  Ramakant Nevatia,et al.  Description and Recognition of Curved Objects , 1977, Artif. Intell..

[3]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[4]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[5]  D. Marr,et al.  Analysis of occluding contour , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  W. Eric L. Grimson Surface consistency constraints in vision , 1983, Comput. Vis. Graph. Image Process..

[7]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[8]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[9]  Andrew P. Witkin,et al.  Recovering Surface Shape and Orientation from Texture , 1981, Artif. Intell..

[10]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[11]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[12]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[13]  W. G. Bickley,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[14]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  D. Marr,et al.  Smallest channel in early human vision. , 1980, Journal of the Optical Society of America.

[18]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[20]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[21]  G. Johansson Visual motion perception. , 1975, Scientific American.

[22]  John Ronald Kender,et al.  Shape from texture , 1981 .

[23]  Myron L. Wolbarsht,et al.  Foundations of Cyclopean Perception.Bela Julesz , 1972 .

[24]  Demetri Terzopoulos Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations , 1982 .

[25]  A. Brandt Multi-Level Adaptive Techniques (MLAT) for Partial Differential Equations: Ideas and Software , 1977 .

[26]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[27]  Berthold K. P. Horn Obtaining shape from shading information , 1989 .

[28]  W E Grimson,et al.  A computer implementation of a theory of human stereo vision. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[30]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[31]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[32]  Takeo Kanade,et al.  Recovery of the Three-Dimensional Shape of an Object from a Single View , 1981, Artif. Intell..

[33]  Kent A. Stevens,et al.  Surface perception from local analysis of texture and contour , 1980 .

[34]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[35]  A. Brandt,et al.  Multigrid Solutions to Elliptic Flow Problems , 1979 .