Neural Approaches to Conversational AI

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

[1]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[2]  David Vandyke,et al.  Learning from real users: rating dialogue success with neural networks for reinforcement learning in spoken dialogue systems , 2015, INTERSPEECH.

[3]  Dirk Weissenborn,et al.  FastQA: A Simple and Efficient Neural Architecture for Question Answering , 2017, ArXiv.

[4]  Geoffrey J. Gordon,et al.  A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning , 2010, AISTATS.

[5]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[6]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[7]  Peter L. Bartlett,et al.  Infinite-Horizon Policy-Gradient Estimation , 2001, J. Artif. Intell. Res..

[8]  Ming-Wei Chang,et al.  Traversing Knowledge Graph in Vector Space without Symbolic Space Guidance , 2016 .

[9]  Tom M. Mitchell,et al.  Incorporating Vector Space Similarity in Random Walk Inference over Knowledge Bases , 2014, EMNLP.

[10]  Jianfeng Gao,et al.  End-to-End Task-Completion Neural Dialogue Systems , 2017, IJCNLP.

[11]  Hervé Frezza-Buet,et al.  Sample-efficient batch reinforcement learning for dialogue management optimization , 2011, TSLP.

[12]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[13]  Ronald A. Cole,et al.  TOOLS FOR RESEARCH AND EDUCATION IN SPEECH SCIENCE , 1999 .

[14]  Bing Liu,et al.  Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling , 2016, INTERSPEECH.

[15]  Matthew Richardson,et al.  MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text , 2013, EMNLP.

[16]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[17]  Lucy Vanderwende,et al.  MindNet: Acquiring and Structuring Semantic Information from Text , 1998, COLING-ACL.

[18]  Kallirroi Georgila,et al.  Hybrid Reinforcement/Supervised Learning of Dialogue Policies from Fixed Data Sets , 2008, CL.

[19]  Young-Bum Kim,et al.  Task Completion Platform: A self-serve multi-domain goal oriented dialogue platform , 2016, NAACL.

[20]  Alexandros Papangelis,et al.  Comparison of an End-to-end Trainable Dialogue System with a Modular Statistical Dialogue System , 2018, INTERSPEECH.

[21]  Stefan Ultes,et al.  Reward-Balancing for Statistical Spoken Dialogue Systems using Multi-objective Reinforcement Learning , 2017, SIGDIAL Conference.

[22]  Dat Quoc Nguyen An overview of embedding models of entities and relationships for knowledge base completion , 2017, ArXiv.

[23]  Shie Mannor,et al.  Reinforcement learning with Gaussian processes , 2005, ICML.

[24]  Jianfeng Gao,et al.  Investigation of Language Understanding Impact for Reinforcement Learning Based Dialogue Systems , 2017, ArXiv.

[25]  Roberto Pieraccini,et al.  User modeling for spoken dialogue system evaluation , 1997, 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings.

[26]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[27]  K. Colby Artificial paranoia; a computer simulation of paranoid processes , 1975 .

[28]  Kallirroi Georgila,et al.  User simulation for spoken dialogue systems: learning and evaluation , 2006, INTERSPEECH.

[29]  Percy Liang,et al.  Know What You Don’t Know: Unanswerable Questions for SQuAD , 2018, ACL.

[30]  Jiliang Tang,et al.  A Survey on Dialogue Systems: Recent Advances and New Frontiers , 2017, SKDD.

[31]  Peng Xu,et al.  Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training , 2018, WASSA@EMNLP.

[32]  Xiang Zhou,et al.  Agent-Aware Dropout DQN for Safe and Efficient On-line Dialogue Policy Learning , 2017, EMNLP.

[33]  Kam-Fai Wong,et al.  Integrating planning for task-completion dialogue policy learning , 2018, ACL.

[34]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[35]  Jianfeng Gao,et al.  Image-Grounded Conversations: Multimodal Context for Natural Question and Response Generation , 2017, IJCNLP.

[36]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[37]  Eric Horvitz,et al.  Multiparty Turn Taking in Situated Dialog: Study, Lessons, and Directions , 2011, SIGDIAL Conference.

[38]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[39]  Oliver Lemon,et al.  Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems , 2009, EACL.

[40]  Benjamin Van Roy,et al.  A Tutorial on Thompson Sampling , 2017, Found. Trends Mach. Learn..

[41]  Harry Shum,et al.  From Eliza to XiaoIce: challenges and opportunities with social chatbots , 2018, Frontiers of Information Technology & Electronic Engineering.

[42]  Hua Ai,et al.  Comparing Spoken Dialog Corpora Collected with Recruited Subjects versus Real Users , 2007, SIGDIAL.

[43]  Kevin Knight,et al.  Generation that Exploits Corpus-Based Statistical Knowledge , 1998, ACL.

[44]  Le Song,et al.  Boosting the Actor with Dual Critic , 2017, ICLR.

[45]  Benjamin Van Roy,et al.  Why is Posterior Sampling Better than Optimism for Reinforcement Learning? , 2016, ICML.

[46]  Maxine Eskénazi,et al.  Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning , 2016, SIGDIAL Conference.

[47]  Matthew R. Walter,et al.  Coherent Dialogue with Attention-Based Language Models , 2016, AAAI.

[48]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[49]  Denny Britz,et al.  Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models , 2017, EMNLP.

[50]  Filip De Turck,et al.  VIME: Variational Information Maximizing Exploration , 2016, NIPS.

[51]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[52]  Ming-Wei Chang,et al.  Search-based Neural Structured Learning for Sequential Question Answering , 2017, ACL.

[53]  W. R. Thompson ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .

[54]  Chong Wang,et al.  Subgoal Discovery for Hierarchical Dialogue Policy Learning , 2018, EMNLP.

[55]  Stefan Ultes,et al.  Domain-Independent User Satisfaction Reward Estimation for Dialogue Policy Learning , 2017, INTERSPEECH.

[56]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[57]  Jing He,et al.  Policy Networks with Two-Stage Training for Dialogue Systems , 2016, SIGDIAL Conference.

[58]  Yuxing Peng,et al.  Mnemonic Reader for Machine Comprehension , 2017, ArXiv.

[59]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[60]  Jianfeng Gao,et al.  Microsoft Dialogue Challenge: Building End-to-End Task-Completion Dialogue Systems , 2018, ArXiv.

[61]  Jianfeng Gao,et al.  A Neural Network Approach to Context-Sensitive Generation of Conversational Responses , 2015, NAACL.

[62]  Jianfeng Gao,et al.  BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems , 2016, AAAI.

[63]  Jianfeng Gao,et al.  deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets , 2015, ACL.

[64]  J. Schatztnann,et al.  Effects of the user model on simulation-based learning of dialogue strategies , 2005, IEEE Workshop on Automatic Speech Recognition and Understanding, 2005..

[65]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[66]  Geoffrey E. Hinton,et al.  Application of Deep Belief Networks for Natural Language Understanding , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[67]  Oliver Lemon,et al.  DIPPER: Description and Formalisation of an Information-State Update Dialogue System Architecture , 2003, SIGDIAL Workshop.

[68]  Blake Howald,et al.  A Statistical NLG Framework for Aggregated Planning and Realization , 2013, ACL.

[69]  Philip Bachman,et al.  NewsQA: A Machine Comprehension Dataset , 2016, Rep4NLP@ACL.

[70]  Jianfeng Gao,et al.  Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models , 2017, IJCNLP.

[71]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[72]  Hugo Larochelle,et al.  GuessWhat?! Visual Object Discovery through Multi-modal Dialogue , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[74]  Tim Paek Empirical Methods for Evaluating Dialog Systems , 2001, SIGDIAL Workshop.

[75]  David Berthelot,et al.  WikiReading: A Novel Large-scale Language Understanding Task over Wikipedia , 2016, ACL.

[76]  Hao Tian,et al.  Policy Learning for Domain Selection in an Extensible Multi-domain Spoken Dialogue System , 2014, EMNLP.

[77]  Yelong Shen,et al.  FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension , 2017, ICLR.

[78]  Xinyan Xiao,et al.  DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications , 2017, QA@ACL.

[79]  Christopher D. Manning,et al.  Key-Value Retrieval Networks for Task-Oriented Dialogue , 2017, SIGDIAL Conference.

[80]  Pascale Fung,et al.  Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems , 2018, ACL.

[81]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[82]  Jianfeng Gao,et al.  Learning Continuous Phrase Representations for Translation Modeling , 2014, ACL.

[83]  Dengyong Zhou,et al.  Action-depedent Control Variates for Policy Optimization via Stein's Identity , 2017 .

[84]  Yang Liu,et al.  Visualizing and Understanding Neural Machine Translation , 2017, ACL.

[85]  Tiejun Zhao,et al.  Knowledge-Based Question Answering as Machine Translation , 2014, ACL.

[86]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[87]  Jason Weston,et al.  The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations , 2015, ICLR.

[88]  Jason D. Williams,et al.  Partially Observable Markov Decision Processes for Spoken Dialogue Management , 2006 .

[89]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[90]  Matthew Henderson,et al.  Deep Neural Network Approach for the Dialog State Tracking Challenge , 2013, SIGDIAL Conference.

[91]  Alex Acero,et al.  Spoken Language Understanding "” An Introduction to the Statistical Framework , 2005 .

[92]  Benjamin Van Roy,et al.  Deep Exploration via Bootstrapped DQN , 2016, NIPS.

[93]  Dilek Z. Hakkani-Tür,et al.  End-to-end joint learning of natural language understanding and dialogue manager , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[94]  Leora Morgenstern,et al.  The Winograd Schema Challenge: Evaluating Progress in Commonsense Reasoning , 2015, AAAI.

[95]  Xiang Zhang,et al.  Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems , 2015, ICLR.

[96]  Hua Ai,et al.  Assessing Dialog System User Simulation Evaluation Measures Using Human Judges , 2008, ACL.

[97]  Geoffrey Zweig,et al.  Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning , 2017, ACL.

[98]  Jianfeng Gao,et al.  Deep Reinforcement Learning with a Natural Language Action Space , 2015, ACL.

[99]  Pierre Geurts,et al.  Tree-Based Batch Mode Reinforcement Learning , 2005, J. Mach. Learn. Res..

[100]  Joelle Pineau,et al.  The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems , 2015, SIGDIAL Conference.

[101]  Alexander I. Rudnicky,et al.  Stochastic natural language generation for spoken dialog systems , 2002, Comput. Speech Lang..

[102]  Xiaodong Liu,et al.  Stochastic Answer Networks for Machine Reading Comprehension , 2017, ACL.

[103]  Andrew McCallum,et al.  Compositional Vector Space Models for Knowledge Base Completion , 2015, ACL.

[104]  Thierry Dutoit,et al.  A probabilistic framework for dialog simulation and optimal strategy learning , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[105]  Jianfeng Gao,et al.  A Human Generated MAchine Reading COmprehension Dataset , 2018 .

[106]  Pascale Fung,et al.  Towards Empathetic Human-Robot Interactions , 2016, CICLing.

[107]  Jianfeng Gao,et al.  Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access , 2016, ACL.

[108]  Danqi Chen,et al.  A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task , 2016, ACL.

[109]  Yelong Shen,et al.  ReasoNet: Learning to Stop Reading in Machine Comprehension , 2016, CoCo@NIPS.

[110]  Jason D. Williams,et al.  Evaluating user simulations with the Cramér-von Mises divergence , 2008, Speech Commun..

[111]  Oliver Lemon,et al.  Learning what to say and how to say it: Joint optimisation of spoken dialogue management and natural language generation , 2011, Comput. Speech Lang..

[112]  Dilek Z. Hakkani-Tür,et al.  Dialogue Learning with Human Teaching and Feedback in End-to-End Trainable Task-Oriented Dialogue Systems , 2018, NAACL.

[113]  Pei-hao Su,et al.  Reward estimation for dialogue policy optimisation , 2018, Comput. Speech Lang..

[114]  Yuting Lai,et al.  DRCD: a Chinese Machine Reading Comprehension Dataset , 2018, ArXiv.

[115]  Antoine Raux,et al.  The Dialog State Tracking Challenge Series , 2014, AI Mag..

[116]  Gary Geunbae Lee,et al.  Data-driven user simulation for automated evaluation of spoken dialog systems , 2009, Comput. Speech Lang..

[117]  Sungjin Lee,et al.  Zero-Shot Adaptive Transfer for Conversational Language Understanding , 2018, AAAI.

[118]  Joelle Pineau,et al.  Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses , 2017, ACL.

[119]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[120]  Alon Lavie,et al.  BLANC: Learning Evaluation Metrics for MT , 2005, HLT.

[121]  George Kurian,et al.  Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation , 2016, ArXiv.

[122]  Jianfeng Gao,et al.  A User Simulator for Task-Completion Dialogues , 2016, ArXiv.

[123]  Geoffrey Zweig,et al.  Recurrent neural networks for language understanding , 2013, INTERSPEECH.

[124]  Wei-Ying Ma,et al.  Hierarchical Recurrent Attention Network for Response Generation , 2017, AAAI.

[125]  Javier Snaider,et al.  Conversational Contextual Cues: The Case of Personalization and History for Response Ranking , 2016, ArXiv.

[126]  Marilyn A. Walker,et al.  An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email , 2000, J. Artif. Intell. Res..

[127]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[128]  Franck Dernoncourt,et al.  Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks , 2016, NAACL.

[129]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[130]  Michael Gamon,et al.  A Machine Learning Approach to the Automatic Evaluation of Machine Translation , 2001, ACL.

[131]  Long Ji Lin,et al.  Self-improving reactive agents based on reinforcement learning, planning and teaching , 1992, Machine Learning.

[132]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[133]  David Vandyke,et al.  Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems , 2015, EMNLP.

[134]  John Bell,et al.  Pragmatic Reasoning: Inferring Contexts , 1999, CONTEXT.

[135]  Matthew Henderson,et al.  Machine Learning for Dialog State Tracking: A Review , 2015 .

[136]  Yelong Shen,et al.  M-Walk: Learning to Walk in Graph with Monte Carlo Tree Search , 2018, NIPS 2018.

[137]  Lihong Li,et al.  Reinforcement learning for dialog management using least-squares Policy iteration and fast feature selection , 2009, INTERSPEECH.

[138]  Geoffrey Zweig,et al.  End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning , 2016, ArXiv.

[139]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[140]  Thomas G. Dietterich Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition , 1999, J. Artif. Intell. Res..

[141]  Jianfeng Gao,et al.  A Diversity-Promoting Objective Function for Neural Conversation Models , 2015, NAACL.

[142]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[143]  Peter L. Bartlett,et al.  Experiments with Infinite-Horizon, Policy-Gradient Estimation , 2001, J. Artif. Intell. Res..

[144]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[145]  Sebastian Riedel,et al.  Constructing Datasets for Multi-hop Reading Comprehension Across Documents , 2017, TACL.

[146]  Oliver Lemon,et al.  Evaluation of a hierarchical reinforcement learning spoken dialogue system , 2010, Comput. Speech Lang..

[147]  Philipp Koehn,et al.  Findings of the 2009 Workshop on Statistical Machine Translation , 2009, WMT@EACL.

[148]  Roberto Pieraccini,et al.  A stochastic model of human-machine interaction for learning dialog strategies , 2000, IEEE Trans. Speech Audio Process..

[149]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[150]  Pascale Fung,et al.  End-to-End Dynamic Query Memory Network for Entity-Value Independent Task-Oriented Dialog , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[151]  Geoffrey Zweig,et al.  Attention with Intention for a Neural Network Conversation Model , 2015, ArXiv.

[152]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[153]  Danqi Chen,et al.  CoQA: A Conversational Question Answering Challenge , 2018, TACL.

[154]  Yi Pan,et al.  Conversational AI: The Science Behind the Alexa Prize , 2018, ArXiv.

[155]  Eric Horvitz,et al.  Models for Multiparty Engagement in Open-World Dialog , 2009, SIGDIAL Conference.

[156]  Joelle Pineau,et al.  A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues , 2016, AAAI.

[157]  Oliver Lemon,et al.  Learning and Evaluation of Dialogue Strategies for New Applications: Empirical Methods for Optimization from Small Data Sets , 2011, CL.

[158]  Andreas Stolcke,et al.  A comparative study of recurrent neural network models for lexical domain classification , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[159]  Csaba Szepesvári,et al.  Finite time bounds for sampling based fitted value iteration , 2005, ICML.

[160]  Jason Weston,et al.  Dialogue Learning With Human-In-The-Loop , 2016, ICLR.

[161]  Seunghak Yu,et al.  Scaling up deep reinforcement learning for multi-domain dialogue systems , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[162]  Hang Li,et al.  A Deep Architecture for Matching Short Texts , 2013, NIPS.

[163]  Candace L. Sidner,et al.  COLLAGEN: Applying Collaborative Discourse Theory to Human-Computer Interaction , 2001, AI Mag..

[164]  Phil Blunsom,et al.  Recurrent Continuous Translation Models , 2013, EMNLP.

[165]  Stefan Ultes,et al.  Sub-domain Modelling for Dialogue Management with Hierarchical Reinforcement Learning , 2017, SIGDIAL Conference.

[166]  Helen F. Hastie,et al.  A survey on metrics for the evaluation of user simulations , 2012, The Knowledge Engineering Review.

[167]  Jakob Grue Simonsen,et al.  A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion , 2015, CIKM.

[168]  Ming-Wei Chang,et al.  A Knowledge-Grounded Neural Conversation Model , 2017, AAAI.

[169]  Daniel Jurafsky,et al.  Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context , 2018, ACL.

[170]  Chong Wang,et al.  Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes , 2017, NIPS.

[171]  Stuart J. Russell,et al.  Reinforcement Learning with Hierarchies of Machines , 1997, NIPS.

[172]  Roberto Pieraccini,et al.  Automating spoken dialogue management design using machine learning: An industry perspective , 2008, Speech Commun..

[173]  Lu Chen,et al.  Structured Dialogue Policy with Graph Neural Networks , 2018, COLING.

[174]  Hang Li,et al.  Coupling Distributed and Symbolic Execution for Natural Language Queries , 2016, ICML.

[175]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[176]  David Vandyke,et al.  A Network-based End-to-End Trainable Task-oriented Dialogue System , 2016, EACL.

[177]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[178]  Bing Liu,et al.  Adversarial Learning of Task-Oriented Neural Dialog Models , 2018, SIGDIAL Conference.

[179]  Ido Dagan,et al.  context2vec: Learning Generic Context Embedding with Bidirectional LSTM , 2016, CoNLL.

[180]  Le Song,et al.  SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation , 2017, ICML.

[181]  Zhe Gan,et al.  Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation , 2018, AAAI.

[182]  Quoc V. Le,et al.  A Neural Conversational Model , 2015, ArXiv.

[183]  Olivier Pietquin,et al.  End-to-end optimization of goal-driven and visually grounded dialogue systems , 2017, IJCAI.

[184]  Donna K. Harman,et al.  Overview of the TREC 2015 LiveQA Track , 2015, TREC.

[185]  Zhen Xu,et al.  Neural Response Generation via GAN with an Approximate Embedding Layer , 2017, EMNLP.

[186]  James F. Allen,et al.  Toward Conversational Human-Computer Interaction , 2001, AI Mag..

[187]  Percy Liang,et al.  Adversarial Examples for Evaluating Reading Comprehension Systems , 2017, EMNLP.

[188]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[189]  Alan Ritter,et al.  Data-Driven Response Generation in Social Media , 2011, EMNLP.

[190]  David Vandyke,et al.  PyDial: A Multi-domain Statistical Dialogue System Toolkit , 2017, ACL.

[191]  Stefan Ultes,et al.  Feudal Reinforcement Learning for Dialogue Management in Large Domains , 2018, NAACL.

[192]  Chris Watkins,et al.  Learning from delayed rewards , 1989 .

[193]  Rebecca Hwa,et al.  A Re-examination of Machine Learning Approaches for Sentence-Level MT Evaluation , 2007, ACL.

[194]  Alan Ritter,et al.  Adversarial Learning for Neural Dialogue Generation , 2017, EMNLP.

[195]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[196]  Michael F. McTear,et al.  Book Review: Spoken Dialogue Technology: Toward the Conversational User Interface, by Michael F. McTear , 2002, CL.

[197]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[198]  Tsung-Hsien Wen,et al.  Neural Belief Tracker: Data-Driven Dialogue State Tracking , 2016, ACL.

[199]  Daniel Jurafsky,et al.  Measuring machine translation quality as semantic equivalence: A metric based on entailment features , 2009, Machine Translation.

[200]  Timothy Baldwin,et al.  Testing for Significance of Increased Correlation with Human Judgment , 2014, EMNLP.

[201]  Gökhan Tür,et al.  Towards Zero-Shot Frame Semantic Parsing for Domain Scaling , 2017, INTERSPEECH.

[202]  Gökhan Tür,et al.  A Discriminative Classification-Based Approach to Information State Updates for a Multi-Domain Dialog System , 2012, INTERSPEECH.

[203]  Tom Schaul,et al.  Unifying Count-Based Exploration and Intrinsic Motivation , 2016, NIPS.

[204]  Milica Gasic,et al.  POMDP-Based Statistical Spoken Dialog Systems: A Review , 2013, Proceedings of the IEEE.

[205]  Lu Chen,et al.  Towards Universal Dialogue State Tracking , 2018, EMNLP.

[206]  Steve J. Young,et al.  Partially observable Markov decision processes for spoken dialog systems , 2007, Comput. Speech Lang..

[207]  Geoffrey Zweig,et al.  Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[208]  Peter Auer,et al.  Near-optimal Regret Bounds for Reinforcement Learning , 2008, J. Mach. Learn. Res..

[209]  Tom Schaul,et al.  Dueling Network Architectures for Deep Reinforcement Learning , 2015, ICML.

[210]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[211]  Marilyn A. Walker,et al.  Evaluating spoken dialogue agents with PARADISE: Two case studies , 1998, Comput. Speech Lang..

[212]  Philipp Koehn,et al.  Statistical Significance Tests for Machine Translation Evaluation , 2004, EMNLP.

[213]  Staffan Larsson,et al.  Information state and dialogue management in the TRINDI dialogue move engine toolkit , 2000, Natural Language Engineering.

[214]  Richard S. Sutton,et al.  Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming , 1990, ML.

[215]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments , 2005, IEEvaluation@ACL.

[216]  Chris Dyer,et al.  The NarrativeQA Reading Comprehension Challenge , 2017, TACL.

[217]  Sepp Hochreiter,et al.  Untersuchungen zu dynamischen neuronalen Netzen , 1991 .

[218]  Bing Liu,et al.  Iterative policy learning in end-to-end trainable task-oriented neural dialog models , 2017, 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[219]  Kenichi Takahashi,et al.  Neural Utterance Ranking Model for Conversational Dialogue Systems , 2016, SIGDIAL Conference.

[220]  Gokhan Tur,et al.  Spoken Language Understanding: Systems for Extracting Semantic Information from Speech , 2011 .

[221]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[222]  Jianfeng Gao,et al.  Deep Learning and Continuous Representations for Natural Language Processing , 2015, NAACL.

[223]  Hang Li,et al.  Neural Responding Machine for Short-Text Conversation , 2015, ACL.

[224]  Dongho Kim,et al.  On-line policy optimisation of Bayesian spoken dialogue systems via human interaction , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[225]  Yann Dauphin,et al.  Deal or No Deal? End-to-End Learning of Negotiation Dialogues , 2017, EMNLP.

[226]  Doina Precup,et al.  Eligibility Traces for Off-Policy Policy Evaluation , 2000, ICML.

[227]  Nan Jiang,et al.  Contextual Decision Processes with low Bellman rank are PAC-Learnable , 2016, ICML.

[228]  Kallirroi Georgila,et al.  Quantitative Evaluation of User Simulation Techniques for Spoken Dialogue Systems , 2005, SIGDIAL.

[229]  Wenhan Xiong,et al.  DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning , 2017, EMNLP.

[230]  Jason Weston,et al.  Learning Through Dialogue Interactions , 2016, ICLR.

[231]  John N. Tsitsiklis,et al.  Actor-Critic Algorithms , 1999, NIPS.

[232]  Jing He,et al.  A Sequence-to-Sequence Model for User Simulation in Spoken Dialogue Systems , 2016, INTERSPEECH.

[233]  Jianfeng Gao,et al.  Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning , 2018, EMNLP.

[234]  Jason Weston,et al.  Reading Wikipedia to Answer Open-Domain Questions , 2017, ACL.

[235]  Ruslan Salakhutdinov,et al.  Gated-Attention Readers for Text Comprehension , 2016, ACL.

[236]  Sina Jafarpour,et al.  Filter, Rank, and Transfer the Knowledge: Learning to Chat , 2010 .

[237]  Hoifung Poon,et al.  Compositional Learning of Embeddings for Relation Paths in Knowledge Base and Text , 2016, ACL.

[238]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[239]  Yuxi Li,et al.  Deep Reinforcement Learning: An Overview , 2017, ArXiv.

[240]  José M. F. Moura,et al.  Visual Dialog , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[241]  Richard Socher,et al.  Learned in Translation: Contextualized Word Vectors , 2017, NIPS.

[242]  Dongho Kim,et al.  Incremental on-line adaptation of POMDP-based dialogue managers to extended domains , 2014, INTERSPEECH.

[243]  Xiaodong Liu,et al.  ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension , 2018, ArXiv.

[244]  David Vandyke,et al.  Multi-domain Neural Network Language Generation for Spoken Dialogue Systems , 2016, NAACL.

[245]  John Miller,et al.  Traversing Knowledge Graphs in Vector Space , 2015, EMNLP.

[246]  Romain Laroche,et al.  Human-Machine Dialogue as a Stochastic Game , 2015, SIGDIAL Conference.

[247]  Dongho Kim,et al.  Evaluation of Statistical POMDP-Based Dialogue Systems in Noisy Environments , 2016 .

[248]  Joelle Pineau,et al.  A Survey of Available Corpora for Building Data-Driven Dialogue Systems , 2015, Dialogue Discourse.

[249]  Yoshua Bengio,et al.  Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding , 2013, INTERSPEECH.

[250]  Guokun Lai,et al.  RACE: Large-scale ReAding Comprehension Dataset From Examinations , 2017, EMNLP.

[251]  Matthew J. Hausknecht,et al.  TextWorld: A Learning Environment for Text-based Games , 2018, CGW@IJCAI.

[252]  Dan Klein,et al.  A Simple Domain-Independent Probabilistic Approach to Generation , 2010, EMNLP.

[253]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[254]  Filip Radlinski,et al.  Online Evaluation for Information Retrieval , 2016, Found. Trends Inf. Retr..

[255]  Romain Laroche,et al.  Reward Function Learning for Dialogue Management , 2012, STAIRS.

[256]  Matthew Henderson,et al.  The Second Dialog State Tracking Challenge , 2014, SIGDIAL Conference.

[257]  Chin-Hui Lee,et al.  A Probabilistic Framework for Representing Dialog Systems and Entropy-Based Dialog Management Through Dynamic Stochastic State Evolution , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[258]  Alex Acero,et al.  Spoken Language Processing: A Guide to Theory, Algorithm and System Development , 2001 .

[259]  He He,et al.  Temporal supervised learning for inferring a dialog policy from example conversations , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[260]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[261]  Steve J. Young,et al.  Stochastic Language Generation in Dialogue using Factored Language Models , 2014, Computational Linguistics.

[262]  Takaaki Hori,et al.  End-to-end Conversation Modeling Track in DSTC6 , 2017, ArXiv.

[263]  Gregory A. Sanders,et al.  The NIST 2008 Metrics for machine translation challenge—overview, methodology, metrics, and results , 2009, Machine Translation.

[264]  Tor Lattimore,et al.  Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning , 2017, NIPS.

[265]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[266]  Harry Shum,et al.  The Design and Implementation of XiaoIce, an Empathetic Social Chatbot , 2018, CL.

[267]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[268]  Joelle Pineau,et al.  Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models , 2015, AAAI.

[269]  Yelong Shen,et al.  A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval , 2014, CIKM.

[270]  Kyunghyun Cho,et al.  SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine , 2017, ArXiv.

[271]  S. Singh,et al.  Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System , 2011, J. Artif. Intell. Res..

[272]  Bing Liu,et al.  Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning , 2018, NAACL.

[273]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[274]  Joseph Weizenbaum,et al.  and Machine , 1977 .

[275]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[276]  Jason Weston,et al.  Personalizing Dialogue Agents: I have a dog, do you have pets too? , 2018, ACL.

[277]  Alex Kulesza,et al.  A learning approach to improving sentence-level MT evaluation , 2004 .

[278]  Timothy Baldwin,et al.  Accurate Evaluation of Segment-level Machine Translation Metrics , 2015, NAACL.

[279]  David Vandyke,et al.  Multi-domain Dialog State Tracking using Recurrent Neural Networks , 2015, ACL.

[280]  Marilyn A. Walker,et al.  Individual and Domain Adaptation in Sentence Planning for Dialogue , 2007, J. Artif. Intell. Res..

[281]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[282]  Jörg Tiedemann,et al.  Parallel Data, Tools and Interfaces in OPUS , 2012, LREC.

[283]  Ming Zhou,et al.  Gated Self-Matching Networks for Reading Comprehension and Question Answering , 2017, ACL.

[284]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[285]  Oren Etzioni,et al.  Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge , 2018, ArXiv.

[286]  Jimmy J. Lin,et al.  Overview of the TREC 2007 Question Answering Track , 2008, TREC.

[287]  Xueqi Cheng,et al.  Learning to Control the Specificity in Neural Response Generation , 2018, ACL.

[288]  Yuxi Li,et al.  Deep Reinforcement Learning , 2018, Reinforcement Learning for Cyber-Physical Systems.

[289]  Tom M. Mitchell,et al.  Random Walk Inference and Learning in A Large Scale Knowledge Base , 2011, EMNLP.

[290]  Alexander J. Smola,et al.  Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning , 2017, ICLR.

[291]  Yannis Stylianou,et al.  Spoken Dialogue for Information Navigation , 2018, SIGDIAL Conference.

[292]  Marilyn A. Walker,et al.  Trainable Sentence Planning for Complex Information Presentations in Spoken Dialog Systems , 2004, ACL.

[293]  Joelle Pineau,et al.  Spoken Dialogue Management Using Probabilistic Reasoning , 2000, ACL.

[294]  Geoffrey Zweig,et al.  From captions to visual concepts and back , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[295]  Rafael E. Banchs,et al.  The Fourth Dialog State Tracking Challenge , 2016, IWSDS.

[296]  Matthieu Geist,et al.  A Comprehensive Reinforcement Learning Framework for Dialogue Management Optimization , 2012, IEEE Journal of Selected Topics in Signal Processing.

[297]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[298]  Mitchell P. Marcus,et al.  Text Chunking using Transformation-Based Learning , 1995, VLC@ACL.

[299]  Ni Lao,et al.  Relational retrieval using a combination of path-constrained random walks , 2010, Machine Learning.

[300]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[301]  Ming Zhou,et al.  Reinforced Mnemonic Reader for Machine Reading Comprehension , 2017, IJCAI.

[302]  Pascale Fung,et al.  Nora the Empathetic Psychologist , 2017, INTERSPEECH.

[303]  Naoyuki Kanda,et al.  Multi-Domain Spoken Dialogue System with Extensibility and Robustness against Speech Recognition Errors , 2006, SIGDIAL Workshop.

[304]  Chen Liang,et al.  Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision , 2016, ACL.

[305]  Lihong Li,et al.  An Empirical Evaluation of Thompson Sampling , 2011, NIPS.

[306]  Yun-Nung Chen,et al.  Natural Language Generation by Hierarchical Decoding with Linguistic Patterns , 2018, NAACL.

[307]  Jason Weston,et al.  Learning End-to-End Goal-Oriented Dialog , 2016, ICLR.

[308]  Richard Socher,et al.  Dynamic Coattention Networks For Question Answering , 2016, ICLR.

[309]  Milica Gasic,et al.  The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management , 2010, Comput. Speech Lang..

[310]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[311]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[312]  Dong Yu,et al.  An Integrative and Discriminative Technique for Spoken Utterance Classification , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[313]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[314]  Zornitsa Kozareva,et al.  SemEval-2012 Task 7: Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning , 2011, *SEMEVAL.

[315]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[316]  Jonathan Berant,et al.  The Web as a Knowledge-Base for Answering Complex Questions , 2018, NAACL.

[317]  Steve J. Young,et al.  The Hidden Agenda User Simulation Model , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[318]  Ming-Wei Chang,et al.  Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base , 2015, ACL.

[319]  James F. Allen,et al.  A Plan Recognition Model for Subdialogues in Conversations , 1987, Cogn. Sci..

[320]  Marilyn A. Walker,et al.  PARADISE: A Framework for Evaluating Spoken Dialogue Agents , 1997, ACL.

[321]  Sham M. Kakade,et al.  A Natural Policy Gradient , 2001, NIPS.

[322]  John Tromp,et al.  Combinatorics of Go , 2006, Computers and Games.

[323]  Lluís Màrquez i Villodre,et al.  A Smorgasbord of Features for Automatic MT Evaluation , 2008, WMT@ACL.

[324]  Oriol Vinyals,et al.  Adversarial Evaluation of Dialogue Models , 2017, ArXiv.

[325]  Rui Liu,et al.  Phase Conductor on Multi-layered Attentions for Machine Comprehension , 2017, ArXiv.

[326]  Maxine Eskénazi,et al.  Spoken Dialog Challenge 2010: Comparison of Live and Control Test Results , 2011, SIGDIAL Conference.

[327]  Zhe Gan,et al.  Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization , 2018, NeurIPS.

[328]  Dilek Z. Hakkani-Tür,et al.  Deep Learning for Dialogue Systems , 2017, COLING.

[329]  Mitesh M. Khapra,et al.  Complex Sequential Question Answering: Towards Learning to Converse Over Linked Question Answer Pairs with a Knowledge Graph , 2018, AAAI.

[330]  Quoc V. Le,et al.  AirDialogue: An Environment for Goal-Oriented Dialogue Research , 2018, EMNLP.

[331]  Oliver Lemon,et al.  Learning Effective Multimodal Dialogue Strategies from Wizard-of-Oz Data: Bootstrapping and Evaluation , 2008, ACL.

[332]  Oliver Lemon,et al.  Optimising Information Presentation for Spoken Dialogue Systems , 2010, ACL.

[333]  Marco Wiering,et al.  Reinforcement Learning , 2014, Adaptation, Learning, and Optimization.

[334]  Eunsol Choi,et al.  TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension , 2017, ACL.

[335]  Yelong Shen,et al.  Implicit ReasoNet: Modeling Large-Scale Structured Relationships with Shared Memory , 2017, ArXiv.

[336]  David Vandyke,et al.  Continuously Learning Neural Dialogue Management , 2016, ArXiv.

[337]  Jun Zhao,et al.  Generating Natural Answers by Incorporating Copying and Retrieving Mechanisms in Sequence-to-Sequence Learning , 2017, ACL.

[338]  Daniel McDuff,et al.  Emotional Dialogue Generation using Image-Grounded Language Models , 2018, CHI.

[339]  Richard Socher,et al.  The Natural Language Decathlon: Multitask Learning as Question Answering , 2018, ArXiv.

[340]  Andreas Stolcke,et al.  Recurrent neural network and LSTM models for lexical utterance classification , 2015, INTERSPEECH.

[341]  Xuchen Yao,et al.  Information Extraction over Structured Data: Question Answering with Freebase , 2014, ACL.

[342]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[343]  Khalil Sima'an,et al.  Fitting Sentence Level Translation Evaluation with Many Dense Features , 2014, EMNLP.

[344]  Sergey Levine,et al.  Trust Region Policy Optimization , 2015, ICML.

[345]  Jianfeng Gao,et al.  Deep Reinforcement Learning for Dialogue Generation , 2016, EMNLP.

[346]  Chong Wang,et al.  Sequence Modeling via Segmentations , 2017, ICML.

[347]  Daniel Jurafsky,et al.  The Best Lexical Metric for Phrase-Based Statistical MT System Optimization , 2010, NAACL.

[348]  Yejin Choi,et al.  Learning to Write with Cooperative Discriminators , 2018, ACL.

[349]  Hao Liu,et al.  Action-dependent Control Variates for Policy Optimization via Stein Identity , 2018, ICLR.

[350]  Alexander I. Rudnicky,et al.  The RavenClaw dialog management framework: Architecture and systems , 2009, Comput. Speech Lang..

[351]  Lihong Li,et al.  Reinforcement Learning in Finite MDPs: PAC Analysis , 2009, J. Mach. Learn. Res..

[352]  Jianfeng Gao,et al.  Recurrent Reinforcement Learning: A Hybrid Approach , 2015, ArXiv.

[353]  Marc'Aurelio Ranzato,et al.  Sequence Level Training with Recurrent Neural Networks , 2015, ICLR.

[354]  Eric Horvitz,et al.  Directions robot: in-the-wild experiences and lessons learned , 2014, AAMAS.

[355]  Gökhan Tür,et al.  Multi-Domain Joint Semantic Frame Parsing Using Bi-Directional RNN-LSTM , 2016, INTERSPEECH.

[356]  Sergey Levine,et al.  High-Dimensional Continuous Control Using Generalized Advantage Estimation , 2015, ICLR.

[357]  Percy Liang,et al.  Compositional Semantic Parsing on Semi-Structured Tables , 2015, ACL.

[358]  Gökhan Tür,et al.  End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding , 2016, INTERSPEECH.

[359]  Philip S. Thomas,et al.  Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning , 2016, ICML.

[360]  Wei Xu,et al.  Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN) , 2014, ICLR.

[361]  Csaba Szepesvári,et al.  Algorithms for Reinforcement Learning , 2010, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[362]  Steve J. Young,et al.  A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies , 2006, The Knowledge Engineering Review.

[363]  Matthieu Geist,et al.  User Simulation in Dialogue Systems Using Inverse Reinforcement Learning , 2011, INTERSPEECH.

[364]  Sergey Levine,et al.  Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic , 2016, ICLR.

[365]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[366]  Milica Gasic,et al.  Gaussian Processes for POMDP-Based Dialogue Manager Optimization , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[367]  Jianfeng Gao,et al.  Open-Domain Neural Dialogue Systems , 2017, IJCNLP.

[368]  Fan Yang,et al.  Differentiable Learning of Logical Rules for Knowledge Base Completion , 2017, ArXiv.

[369]  Kam-Fai Wong,et al.  Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning , 2017, EMNLP.

[370]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[371]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[372]  Joelle Pineau,et al.  How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation , 2016, EMNLP.

[373]  Yelong Shen,et al.  Link Prediction using Embedded Knowledge Graphs , 2016 .

[374]  Vassilios Diakoloukas,et al.  A Case Study on the Importance of Belief State Representation for Dialogue Policy Management , 2018, INTERSPEECH.

[375]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[376]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[377]  David Vandyke,et al.  Policy committee for adaptation in multi-domain spoken dialogue systems , 2015, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

[378]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[379]  Amanda Spink,et al.  Searching the Web: the public and their queries , 2001 .

[380]  Zhou Yu,et al.  Multimodal Hierarchical Reinforcement Learning Policy for Task-Oriented Visual Dialog , 2018, SIGDIAL Conference.

[381]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[382]  Yoav Artzi,et al.  Learning to Map Context-Dependent Sentences to Executable Formal Queries , 2018, NAACL.

[383]  Eunsol Choi,et al.  QuAC: Question Answering in Context , 2018, EMNLP.

[384]  Richard Socher,et al.  Ask Me Anything: Dynamic Memory Networks for Natural Language Processing , 2015, ICML.

[385]  Matthieu Geist,et al.  Uncertainty Management for On-Line Optimisation of a POMDP-Based Large-Scale Spoken Dialogue System , 2011, INTERSPEECH.

[386]  Dirk Weissenborn,et al.  Making Neural QA as Simple as Possible but not Simpler , 2017, CoNLL.

[387]  Xiaodong Liu,et al.  An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks , 2017, IJCNLP.

[388]  Antoine Raux,et al.  The Dialog State Tracking Challenge , 2013, SIGDIAL Conference.

[389]  Jianfeng Gao,et al.  A Persona-Based Neural Conversation Model , 2016, ACL.

[390]  Matthew Stone,et al.  Sentence generation as a planning problem , 2007, ACL.

[391]  Qifa Ke,et al.  Conversational Query Understanding Using Sequence to Sequence Modeling , 2018, WWW.

[392]  Quoc V. Le,et al.  QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension , 2018, ICLR.

[393]  Matthew Stone,et al.  Microplanning with Communicative Intentions: The SPUD System , 2001, Comput. Intell..

[394]  Markku Turunen,et al.  Subjective evaluation of spoken dialogue systems using SER VQUAL method , 2004, INTERSPEECH.

[395]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[396]  Regina Barzilay,et al.  Language Understanding for Text-based Games using Deep Reinforcement Learning , 2015, EMNLP.

[397]  David Vandyke,et al.  On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems , 2016, ACL.

[398]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[399]  Parminder Bhatia,et al.  soc2seq: Social Embedding meets Conversation Model , 2017, ArXiv.

[400]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[401]  David Traum,et al.  Speech Acts for Dialogue Agents , 1999 .

[402]  Nan Jiang,et al.  Doubly Robust Off-policy Value Evaluation for Reinforcement Learning , 2015, ICML.

[403]  Marilyn A. Walker,et al.  Towards developing general models of usability with PARADISE , 2000, Natural Language Engineering.

[404]  Kallirroi Georgila,et al.  SimSensei kiosk: a virtual human interviewer for healthcare decision support , 2014, AAMAS.