Multimode piezoelectric shunt damping with a highly resonant impedance

This brief paper proposes a novel impedance structure for piezoelectric shunt damping. The impedance has a highly resonant nature and can be considered as a feedback controller applying a high gain at each resonance frequency of the base structure. Closed-loop stability of the system is proved and robustness properties of the associated controller are studied. Experimental results, demonstrating the effectiveness of the proposed procedure are presented.

[1]  M. Balas Active control of flexible systems , 1978 .

[2]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[3]  S. Joshi,et al.  On a class of marginally stable positive-real systems , 1996, IEEE Trans. Autom. Control..

[4]  Sam Behrens Passive and Semi-Active Vibration Control of Piezoelectric Laminates , 2000 .

[5]  Andrew J. Fleming,et al.  Synthetic impedance for implementation of piezoelectric shunt-damping circuits , 2000 .

[6]  Andrew J. Fleming,et al.  A broadband controller for shunt piezoelectric damping of structural vibration , 2003 .

[7]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[8]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[9]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[10]  J. Hollkamp Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts , 1994 .

[11]  Shu-yau Wu,et al.  Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control , 1996, Smart Structures.

[12]  P. Hughes,et al.  Space structure vibration modes: How many exist? Which ones are important? , 1984, IEEE Control Systems Magazine.

[13]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[14]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[15]  Andrew J. Fleming,et al.  Multiple mode current flowing passive piezoelectric shunt controller , 2003 .

[16]  S. O. Reza Moheimani,et al.  Optimization and implementation of multimode piezoelectric shunt damping systems , 2002 .

[17]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[18]  S. O. Reza Moheimani,et al.  An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate , 2003 .

[19]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[20]  Lennart Ljung,et al.  Subspace-based identification of infinite-dimensional multivariable systems from frequency-response data , 1996, Autom..

[21]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[22]  K. W. Wang,et al.  Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement , 2001 .

[23]  S. O. Reza Moheimani,et al.  Spatial resonant control of flexible structures-application to a piezoelectric laminate beam , 2001, IEEE Trans. Control. Syst. Technol..

[24]  R.H.S. Riordan,et al.  Simulated inductors using differential amplifiers , 1967 .

[25]  Shu-yau Wu,et al.  Method for multiple-mode shunt damping of structural vibration using a single PZT transducer , 1998, Smart Structures.

[26]  Andrew J. Fleming,et al.  Subspace based system identification for an acoustic enclosure , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[27]  Daniel J. Inman Smart Structures for Vibration Suppression of Optical Surfaces , 2002 .

[28]  James Edward Storer,et al.  Passive network synthesis , 1957 .