A neural architecture for the symmetric-axis transform

The symmetric-axis transform is a process that dynamically encodes the space of a visual shape through self-interaction of its contours. It is generally simulated using computer algorithms. A neural architecture of this transformation is presented that is conceptually simple enough for a hardware implementation. Its architecture consists of a wave-propagating map, orientation-selective columns detecting wave pieces of specific orientation, and a coincidence map detecting the clash of two wave fronts. We illustrate its operation on partial contours extracted from gray-scale images.

[1]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[2]  Olaf Kübler,et al.  Voronoi tessellation of points with integer coordinates: Time-efficient implementation and online edge-list generation , 1995, Pattern Recognit..

[3]  J. R. Hughes,et al.  The Phenomenon of Travelling Waves: A Review , 1995, Clinical EEG.

[4]  Christoph Rasche,et al.  Neuromorphic Excitable Maps for Visual Processing , 2007, IEEE Transactions on Neural Networks.

[5]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[6]  Davis Barch,et al.  Slowly moving stimuli induce characteristic periodic activity waves in an excitable membrane model of visual motion processing , 2002, Neurocomputing.

[7]  D. Kleinfeld,et al.  Visual stimuli induce waves of electrical activity in turtle cortex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[9]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[10]  S. W. Hayter,et al.  Concepts of Space by Max Jammer (review) , 1971 .

[11]  O Kübler,et al.  Voronoi tessellation of points with integer coordinates , 1995 .

[12]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[13]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Rodney J. Douglas,et al.  A pulse-coded communications infrastructure for neuromorphic systems , 1999 .

[15]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[16]  P. Lennie Receptive fields , 2003, Current Biology.

[17]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[18]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[19]  Kwabena Boahen,et al.  A Retinomorphic Chip with Parallel Pathways: Encoding INCREASING, ON, DECREASING, and OFF Visual Signals , 2002 .

[20]  I. A. Shevelev,et al.  Fast thermal waves spreading over the cerebral cortex , 1997, Neuroscience.

[21]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[22]  F. Werblin,et al.  Spatiotemporal patterns at the retinal output. , 1998, Journal of neurophysiology.

[23]  Christoph Rasche,et al.  Signaling contours by neuromorphic wave propagation , 2004, Biological Cybernetics.

[24]  H. Blum Biological shape and visual science (part I) , 1973 .

[25]  Christoph Rasche The Making of a Neuromorphic Visual System , 2004 .

[26]  Martin D. Levine,et al.  Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  H. Wilson,et al.  Dynamics of travelling waves in visual perception , 2001, Nature.

[28]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[29]  Adam Krzyzak,et al.  Piecewise Linear Skeletonization Using Principal Curves , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[31]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[32]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[34]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[35]  Bela Julesz,et al.  Medial-point description of shape: a representation for action coding and its psychophysical correlates , 1998, Vision Research.

[36]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  BoahenKwabena A Retinomorphic Chip with Parallel Pathways , 2002 .