Organic Nonvolatile Memory Devices Based on Ferroelectricity

A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low‐cost memory technology. In this Review Article we discuss the latest developments in this area with a focus on three of the most important device concepts: ferroelectric capacitors, field‐effect transistors, and diodes. Integration of these devices into larger memory arrays is also discussed.

[1]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[2]  W. J. Merz Switching Time in Ferroelectric BaTiO3 and Its Dependence on Crystal Thickness , 1956 .

[3]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[4]  I. P. Batra,et al.  Depolarization-Field-Induced Instability in Thin Ferroelectric Films-Experiment and Theory , 1973 .

[5]  E. Fukada,et al.  Dielectric hysteresis and rotation of dipoles in polyvinylidene fluoride , 1980 .

[6]  A. J. Lovinger Ferroelectric Polymers , 1983, Science.

[7]  K. Kimura,et al.  Polarization Behavior in Vinylidene Fluoride-Trifluoroethylene Copolymer Thin Films , 1986 .

[8]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[9]  Wolf,et al.  Ferroelectric Schottky diode. , 1994, Physical review letters.

[10]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[11]  Y. Tajitsu Effects of Thickness on Ferroelectricity in Vinylidene Fluoride and Trifluoroethylene Copolymers , 1995 .

[12]  T. Furukawa,et al.  Effects of annealing on the structure and switching characteristics of VDF/TrFE copolymers , 1997 .

[13]  Toshishige Shimamura,et al.  Proposal of a Single-Transistor-Cell-Type Ferroelectric Memory Using an SOI Structure and Experimental Study on the Interference Problem in the Write Operation , 1997 .

[14]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[15]  K. Matsushige,et al.  Nanoscale control and detection of electric dipoles in organic molecules , 1998 .

[16]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[17]  T. Jackson,et al.  Solvent-induced phase transition in thermally evaporated pentacene films , 1999 .

[18]  Haisheng Xu,et al.  Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films , 2001 .

[19]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[20]  Qiming Zhang,et al.  Dependence of threshold thickness of crystallization and film morphology on film processing conditions in poly(vinylidene fluoride-trifluoroethylene) copolymer thin films , 2002 .

[21]  V. Mihailetchi,et al.  Injection-limited electron current in a methanofullerene , 2003 .

[22]  Toshihisa Horiuchi,et al.  Remanent polarization of evaporated films of vinylidene fluoride oligomers , 2003 .

[23]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[24]  Stephen Ducharme,et al.  Kinetics of ferroelectric switching in ultrathin films , 2003 .

[25]  G. Krausch,et al.  Wetting at polymer surfaces and interfaces , 2003 .

[26]  P. Blom,et al.  Low voltage switching of a spin cast ferroelectric polymer , 2004 .

[27]  Jean-Michel Nunzi,et al.  A nonvolatile memory element based on an organic field-effect transistor , 2004 .

[28]  Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film , 2004 .

[29]  Raoul Schroeder,et al.  All‐Organic Permanent Memory Transistor Using an Amorphous, Spin‐Cast Ferroelectric‐like Gate Insulator , 2004 .

[30]  Y. Matsuo,et al.  Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene , 2004 .

[31]  S. Bauer,et al.  Nonvolatile organic field-effect transistor memory element with a polymeric gate electret , 2004 .

[32]  Soeren Steudel,et al.  Influence of the dielectric roughness on the performance of pentacene transistors , 2004 .

[33]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.

[34]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[35]  Intrinsic switching characteristics of ferroelectric ultrathin vinylidene fluoride/trifluoroethylene copolymer films revealed using Au electrode , 2005 .

[36]  P. Blom,et al.  An Organic Field‐Effect Transistor with Programmable Polarity , 2005 .

[37]  M. Grell,et al.  Memory performance and retention of an all-organic ferroelectric-like memory transistor , 2005, IEEE Electron Device Letters.

[38]  B. de Boer,et al.  Low-voltage polymer field-effect transistors for nonvolatile memories , 2005 .

[39]  S. Bauer,et al.  High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric , 2005 .

[40]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[41]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[42]  S. Ducharme,et al.  Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications , 2005, IEEE Transactions on Device and Materials Reliability.

[43]  S. Bauer,et al.  Transparent pyroelectric sensors and organic field-effect transistors with fluorinated polymers: steps towards organic infrared detectors , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[44]  Hyun-Yong Lee,et al.  Organic Non‐Volatile Memory Based on Pentacene Field‐Effect Transistors Using a Polymeric Gate Electret , 2006 .

[45]  T. Furukawa,et al.  Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[46]  J. Ouyang,et al.  Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices , 2006 .

[47]  P. Blom,et al.  Comment on ‘Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir–Blodgett films’ , 2006 .

[48]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[49]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[50]  B. de Boer,et al.  High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric , 2006 .

[51]  Mark-Jan Spijkman,et al.  Origin of the drain current bistability in polymer ferroelectric field-effect transistors , 2007 .

[52]  Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films , 2006, cond-mat/0611539.

[53]  Haisheng Xu,et al.  Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface , 2007 .

[54]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[55]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[56]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[57]  Satoshi Horie,et al.  Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film , 2007 .

[58]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[59]  Data Retention and Readout Degradation Properties of Pt/Sr0:7Sm0:07Bi2:2Ta2O9/HfO2/Si Structure Ferroelectric-Gate Field Effect Transistors , 2007 .

[60]  Pooi See Lee,et al.  Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric , 2007 .

[61]  Yukio Watanabe Review of Resistance Switching of Ferroelectrics and Oxides in Quest for Unconventional Electronic Mechanisms , 2007 .

[62]  D. Schmeißer,et al.  Microscopic and spectroscopic characterization of interfaces and dielectric layers for OFET devices , 2008 .

[63]  Henrique L. Gomes,et al.  Switching dynamics in non-volatile polymer memories , 2008 .

[64]  A. Tagantsev,et al.  Restricted domain growth and polarization reversal kinetics in ferroelectric polymer thin films , 2008 .

[65]  James M Tour,et al.  Electronic two-terminal bistable graphitic memories. , 2008, Nature materials.

[66]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[67]  Chien A. Nguyen,et al.  Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric , 2008 .

[68]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[69]  Paul A. van Hal,et al.  Ultralow Power Microfuses for Write‐Once Read‐Many Organic Memory Elements , 2008 .

[70]  Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. , 2008, Nature materials.

[71]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[72]  J. Scott,et al.  Ferroelectrics go bananas , 2008 .

[73]  T. Someya,et al.  Printed Nonvolatile Memory for a Sheet-Type Communication System , 2009, IEEE Transactions on Electron Devices.

[74]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[75]  K. Yao,et al.  Gate-controlled nonvolatile graphene-ferroelectric memory , 2009, 0904.1326.