Obstacle avoidance for mobile robot using RGB-D camera

Autonomous navigation of mobile robots in indoor cluttered environment is always a challenging task. This research paper represents the effectiveness of an RGB-D camera in order to achieve the task. With the help of the Kinect as a vision sensor and utilizing the open source Robot Operating System (ROS), this research aims to evaluate effectiveness of the system for Mobile robots. Research results show that within the typical range of the Kinect sensor, it performed very well with high accuracy. Experiment performed on a Raspberry Pi system shows minimum lag of the robot for avoiding obstacles, and verified the feasibility of the implemented algorithm.

[1]  Edward Tunstel,et al.  Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversability , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[2]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[3]  Volker Graefe,et al.  Vision-based autonomous road vehicles , 1992 .

[4]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[5]  Giulio Sandini,et al.  Visual-Based Obstacle Detection A purposive approach using the normal flow , 1995 .

[6]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[7]  Erann Gat,et al.  Mars microrover navigation: Performance evaluation and enhancement , 1995, Auton. Robots.

[8]  Martial Hebert,et al.  Mapping and positioning for a prototype lunar rover , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[9]  Masayuki Inaba,et al.  Visual navigation using omnidirectional view sequence , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[10]  Kokichi Sugihara,et al.  Some location problems for robot navigation using a single camera , 1988, Comput. Vis. Graph. Image Process..

[11]  James L. Crowley,et al.  Appearance based processes for visual navigation , 1997 .

[12]  Masayuki Inaba,et al.  Visual navigation using view-sequenced route representation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[13]  Michel Dhome,et al.  Outdoor autonomous navigation using monocular vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Sushabhan Choudhury,et al.  Investigation on optimized relative localization of a mobile robot using regression analysis , 2016, 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC).

[15]  Volker Graefe,et al.  Vision For Intelligent Road Vehicles , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[16]  Takeshi Hirose,et al.  An Automobile with Artificial Intelligence , 1979, IJCAI.

[17]  Yoshiaki Shirai,et al.  Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Christian Laugier,et al.  Fusion of stereo and optical flow data using occupancy grids , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[19]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[20]  Avinash C. Kak,et al.  Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing , 1998, IEEE Trans. Robotics Autom..

[21]  Larry H. Matthies,et al.  Robotic vehicles for planetary exploration , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[22]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[23]  Adrian Hilton,et al.  Scene modelling from sparse 3D data , 2005, Image Vis. Comput..

[24]  J. Pan,et al.  FUZZY NAV A Vision Based Robot Navigation Architecture using Fuzzy Inference for Uncertainty Reasoning , 1995 .

[25]  Jana Kosecka,et al.  Qualitative image based localization in indoors environments , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[26]  José Santos-Victor,et al.  Mobile Robot Navigation using Omni-directional Vision , 1999 .

[27]  José Santos-Victor,et al.  Vision-based navigation and environmental representations with an omnidirectional camera , 2000, IEEE Trans. Robotics Autom..

[28]  A. Zaknich,et al.  Visually-guided obstacle avoidance , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[29]  Henrik I. Christensen,et al.  Model-driven vision for in-door navigation , 1993, Other Conferences.

[30]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[31]  Patrick Gros,et al.  3D navigation based on a visual memory , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Daniel O. Sales,et al.  Mobile Robots Navigation in Indoor Environments Using Kinect Sensor , 2012, 2012 Second Brazilian Conference on Critical Embedded Systems.

[33]  Hans P. Moravec,et al.  The Stanford Cart and the CMU Rover , 1983, Proceedings of the IEEE.

[34]  Hanumant Singh,et al.  Visually augmented navigation in an unstructured environment using a delayed state history , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Reinhard Koch,et al.  Pose estimation and map building with a Time-Of-Flight-camera for robot navigation , 2008, Int. J. Intell. Syst. Technol. Appl..

[36]  José Santos-Victor,et al.  Omni-directional Visual Navigation , 1999 .

[37]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[38]  G. Oriolo,et al.  On-line map building and navigation for autonomous mobile robots , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[39]  Ramakant Nevatia,et al.  Symbolic Navigation with a Generic Map , 1999, Auton. Robots.

[40]  Avinash C. Kak,et al.  Fast Vision-guided Mobile Robot Navigation Using Model-based Reasoning And Prediction Of Uncertainties , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[42]  Ben J. A. Kröse,et al.  Navigation of a mobile robot on the temporal development of the optic flow , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[43]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[44]  Shin'ichi Yuta,et al.  Autonomous navigation for mobile robots referring pre-recorded image sequence , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[45]  Bruce A. Draper,et al.  A practical obstacle detection and avoidance system , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[46]  Takashi Tsubouchi,et al.  Map assisted vision system of mobile robots for reckoning in a building environment , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[47]  Gregory D. Hager,et al.  Real-time vision-based robot localization , 1993, IEEE Trans. Robotics Autom..

[48]  M. Meng,et al.  Mobile robot navigation using neural networks and nonmetrical environmental models , 1993, IEEE Control Systems.

[49]  Gregory Dudek,et al.  Learning Generative Models of Scene Features , 2004, International Journal of Computer Vision.

[50]  Giulio Sandini,et al.  Divergent stereo for robot navigation: learning from bees , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Masahiro Tomono,et al.  3-D Object Map Building Using Dense Object Models with SIFT-based Recognition Features , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Rodney A. Brooks,et al.  Visually-guided obstacle avoidance in unstructured environments , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[53]  Matthew Turk,et al.  VITS-A Vision System for Autonomous Land Vehicle Navigation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[55]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[56]  A. Aguado,et al.  Incremental map building using an occupancy grid for an autonomous monocular robot , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[57]  Masayoshi Hashima,et al.  Localization and obstacle detection for robots for carrying food trays , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[58]  Gregory Dudek,et al.  Effective exploration strategies for the construction of visual maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[59]  Martin Herman,et al.  Real-time single-workstation obstacle avoidance using only wide-field flow divergence , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[60]  Volker Graefe,et al.  Dynamic Vision Systems for Autonomous Mobile Robots , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[61]  Alexandre Bernardino,et al.  Visual behaviours for binocular tracking , 1998, Robotics Auton. Syst..

[62]  Avinash C. Kak,et al.  NEURO-NAV: a neural network based architecture for vision-guided mobile robot navigation using non-metrical models of the environment , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[63]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[64]  Khairul Salleh Mohamed Sahari,et al.  Indoor mapping using kinect and ROS , 2015, 2015 International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR).

[65]  Roland Siegwart,et al.  MAV navigation through indoor corridors using optical flow , 2010, 2010 IEEE International Conference on Robotics and Automation.

[66]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..