On fischer-frobenius transformations and the structure of rectangular block hankel matrices

In this paper, we develop three essential ingredients of an algebraic structure theory of finite block Hankel matrices. The development centers around a transformation of block Hankel matrices, first introduced by Fischer and Frobenius for scalar Hankel matrices. We prove three results:First, Iohvidov's fundamental notion of the characteristic of a Hankel matrix is extended to the block matrix case and the relationship between rank and characteristic is clarified. The characteristic of block Hankel matrices involves the introduction of two new sets of invariants, the principal and residual observability and controllability indices. Second, the class of generalized Fischer-Frobenius transformations is shown to be the largest class of rank preserving transformations X↦S T XT which leave the set of block Hankel matrices invariant. Finally the principal minor lemma from scalar Hankel matrix theory is extended to the block matrix case. We use this generalization in order to prove that the set of fixed rank blo...

[1]  Uwe Helmke,et al.  Topological aspects of the partial realization problem , 1992, Math. Control. Signals Syst..

[2]  Hugo J. Woerdeman,et al.  Minimal rank completions for block matrices , 1989 .

[3]  Uwe Helmke,et al.  A partial compactification for linear systems , 1986 .

[4]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[5]  F. R. Gantmakher The Theory of Matrices , 1984 .

[6]  G. Rota Hankel and toeplitz matrices and forms: I. S. Iohvidov. Birkhaüser, Basel, 1982, 231 pp. , 1983 .

[7]  K. Glover Some Geometrical Properties of Linear Systems with Implications in Identification , 1975 .

[8]  J. Rissanen Basis of invariants and canonical forms for linear dynamic systems , 1974, Autom..

[9]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[10]  D. Alpay,et al.  On a new class of reproducing kernel spaces and a new generalization of the Iohvidov laws , 1993 .

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  G. Heinig,et al.  Matrices with Displacement Structure, Generalized Bezoutians, and Moebius Transformations , 1989 .

[13]  Christopher I. Byrnes,et al.  On Certain Topological Invariants Arising in System Theory , 1982 .

[14]  Roger Brockett,et al.  The geometry of the partial realization problem , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[15]  P. Tonne A regular determinant of binomial coefficients , 1973 .

[16]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[17]  I. Schur,et al.  Vorlesungen über Invariantentheorie , 1968 .

[18]  R. Stern,et al.  Some Geometric Questions in the Theory of Linear Systems , 2022 .