Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva

Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the Drosophila melanogaster larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.

[1]  Hiroshi Kohsaka,et al.  Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin , 2011, PloS one.

[2]  Aurel A Lazar,et al.  Figures and figure supplements Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations , 2015 .

[3]  Suewei Lin,et al.  Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior , 2018, eLife.

[4]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[5]  Doycho Karagyozov,et al.  Recording neural activity in unrestrained animals with 3D tracking two photon microscopy , 2017, bioRxiv.

[6]  E. Russell,et al.  The Orientation of Animals , 1941, Nature.

[7]  Barbara Webb,et al.  A Model of Drosophila Larva Chemotaxis , 2015, PLoS Comput. Biol..

[8]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[9]  M. Cobb What and how do maggots smell? , 1999 .

[10]  R. Kanzaki,et al.  Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori , 1994, Journal of Comparative Physiology A.

[11]  Salil S. Bidaye,et al.  Neuronal Control of Drosophila Courtship Song , 2011, Neuron.

[12]  Jimena Berni,et al.  Genetic Dissection of a Regionally Differentiated Network for Exploratory Behavior in Drosophila Larvae , 2015, Current Biology.

[13]  Marc Gershow,et al.  Two Alternating Motor Programs Drive Navigation in Drosophila Larva , 2011, PloS one.

[14]  Gerald M. Rubin,et al.  A Higher Brain Circuit for Immediate Integration of Conflicting Sensory Information in Drosophila , 2015, Current Biology.

[15]  Gregory S.X.E. Jefferis,et al.  Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit , 2005, Current Biology.

[16]  Philipp Schlegel,et al.  Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae , 2015, PloS one.

[17]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[18]  Takako Morimoto,et al.  A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae , 2014, Current Biology.

[19]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[20]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[21]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[22]  G. Rubin,et al.  Genetic Reagents for Making Split-GAL4 Lines in Drosophila , 2017, Genetics.

[23]  V. Sourjik,et al.  Stimulus sensing and signal processing in bacterial chemotaxis. , 2018, Current opinion in microbiology.

[24]  W. Kristan Neuronal Decision-Making Circuits , 2008, Current Biology.

[25]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[26]  Ulrike Träger,et al.  Polarization-Sensitive Descending Neurons in the Locust: Connecting the Brain to Thoracic Ganglia , 2011, The Journal of Neuroscience.

[27]  P. Katz Evolution of central pattern generators and rhythmic behaviours , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Aravinthan D. T. Samuel,et al.  Controlling airborne cues to study small animal navigation , 2012, Nature Methods.

[29]  Lars Chittka,et al.  Speed-accuracy tradeoffs in animal decision making. , 2009, Trends in ecology & evolution.

[30]  C. H. Green,et al.  Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae , 1983, Animal Behaviour.

[31]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[32]  Kristin Branson,et al.  Whole-central nervous system functional imaging in larval Drosophila , 2015, Nature Communications.

[33]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[34]  John Murtis,et al.  Odor Plumes and How Insects Use Them , 1992 .

[35]  Matthieu Louis,et al.  A circuit supporting concentration-invariant odor perception in Drosophila , 2009, Journal of biology.

[36]  Stefan R. Pulver,et al.  Autonomous Circuitry for Substrate Exploration in Freely Moving Drosophila Larvae , 2012, Current Biology.

[37]  W. O. Friesen,et al.  Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion , 1986, Journal of Comparative Physiology A.

[38]  Rachel I. Wilson,et al.  Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels , 2016, Neuron.

[39]  C. R. Reyn,et al.  Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response , 2017, Neuron.

[40]  Julie H. Simpson,et al.  A neural command circuit for grooming movement control , 2015, eLife.

[41]  Barbara Webb,et al.  Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae , 2016, eLife.

[42]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[43]  John B. Thomas,et al.  A subset of interneurons required for Drosophila larval locomotion , 2016, Molecular and Cellular Neuroscience.

[44]  M. Pankratz,et al.  Selection of Motor Programs for Suppressing Food Intake and Inducing Locomotion in the Drosophila Brain , 2014, PLoS biology.

[45]  A. Cardona,et al.  A circuit mechanism for the propagation of waves of muscle contraction in Drosophila , 2016, eLife.

[46]  E. Heckscher,et al.  Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs , 2016, G3: Genes, Genomes, Genetics.

[47]  Matthieu Louis,et al.  Manipulation of Neural Circuits in Drosophila Larvae , 2017 .

[48]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[49]  A. Cardona,et al.  An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.

[50]  Shamik Dasgupta,et al.  FoxP influences the speed and accuracy of a perceptual decision in Drosophila , 2014, Science.

[51]  R. Stocker,et al.  Localized olfactory representation in mushroom bodies of Drosophila larvae , 2009, Proceedings of the National Academy of Sciences.

[52]  Jonathan D Victor,et al.  Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies , 2018, bioRxiv.

[53]  G. Rubin,et al.  Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila , 2018, Neuron.

[54]  Vikas Bhandawat,et al.  Organization of descending neurons in Drosophila melanogaster , 2016, Scientific Reports.

[55]  Akira Fushiki,et al.  Development of larval motor circuits in Drosophila , 2012, Development, growth & differentiation.

[56]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[57]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[58]  Stephen J. Eglen,et al.  Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling , 2013, Front. Comput. Neurosci..

[59]  Paolo Paoletti,et al.  Integrative neuromechanics of crawling in D. melanogaster larvae , 2016, eLife.

[60]  Oliver Barnstedt,et al.  Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body , 2016, Neuron.

[61]  Alex Gomez-Marin,et al.  Active sensation during orientation behavior in the Drosophila larva: more sense than luck , 2012, Current Opinion in Neurobiology.

[62]  F. Libersat,et al.  What can parasitoid wasps teach us about decision-making in insects? , 2013, Journal of Experimental Biology.

[63]  Mason Klein,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015, bioRxiv.

[64]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[65]  James W. Truman,et al.  Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion , 2016, Scientific Reports.

[66]  Omotara Ogundeyi,et al.  A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. , 2014, Cell reports.

[67]  Aravinthan D. T. Samuel,et al.  Sensorimotor structure of Drosophila larva phototaxis , 2013, Proceedings of the National Academy of Sciences.

[68]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[69]  Marc Gershow,et al.  Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues , 2018, Nature Communications.

[70]  D. Soll,et al.  Coordination and Modulation of Locomotion Pattern Generators in Drosophila Larvae: Effects of Altered Biogenic Amine Levels by the Tyramine β Hydroxlyase Mutation , 2006, The Journal of Neuroscience.

[71]  Michael H. Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017 .

[72]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[73]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[74]  Michael H. Dickinson,et al.  Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes , 2014, Current Biology.

[75]  Michael H. Dickinson,et al.  Olfactory modulation of flight in Drosophila is sensitive, selective and rapid , 2010, Journal of Experimental Biology.

[76]  Albert Cardona,et al.  MDN brain descending neurons coordinately activate backward and inhibit forward locomotion , 2018, eLife.

[77]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[78]  John R Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Antenna , 2004, Cell.

[79]  Katherine I. Nagel,et al.  Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics , 2014, Nature Neuroscience.

[80]  W. Foster BIOLOGICAL REVIEWS of the CAMBRIDGE PHILOSOPHICAL SOCIETY , 1995 .

[81]  John R. Carlson,et al.  Functional diversity among sensory receptors in a Drosophila olfactory circuit , 2013, Proceedings of the National Academy of Sciences.

[82]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[83]  Aravinthan D. T. Samuel,et al.  Navigational Decision Making in Drosophila Thermotaxis , 2010, The Journal of Neuroscience.

[84]  Michael D. Kim,et al.  Patterning and organization of motor neuron dendrites in the Drosophila larva. , 2009, Developmental biology.

[85]  Christopher M. Comer,et al.  Cellular Organization of an Antennal Mechanosensory Pathway in the Cockroach, Periplaneta americana , 1996, The Journal of Neuroscience.

[86]  Alex Gomez-Marin,et al.  Role of the Subesophageal Zone in Sensorimotor Control of Orientation in Drosophila Larva , 2015, Current Biology.

[87]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[88]  E. Staudacher Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus , 2001, Journal of Comparative Physiology A.

[89]  Oren Shoval,et al.  SnapShot: Network Motifs , 2010, Cell.

[90]  Matthias Landgraf,et al.  Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude , 2015, Neuron.

[91]  Leslie B. Vosshall,et al.  Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila , 2005, Current Biology.

[92]  Shawn R. Lockery,et al.  Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature , 2012, The Journal of Neuroscience.

[93]  A. Chiba,et al.  Single-cell analysis of Drosophila larval neuromuscular synapses. , 2001, Developmental biology.

[94]  William Bialek,et al.  Mapping the stereotyped behaviour of freely moving fruit flies , 2013, Journal of The Royal Society Interface.

[95]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[96]  Gordon J. Berman,et al.  Optogenetic dissection of descending behavioral control in Drosophila , 2017, bioRxiv.

[97]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[98]  M. Sokolowski,et al.  Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. , 1995, Journal of neurogenetics.

[99]  H. Kohsaka,et al.  Gap Junction–Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila , 2017, The Journal of Neuroscience.

[100]  Ann-Shyn Chiang,et al.  Blockade of Neurotransmission in Drosophila Mushroom Bodies Impairs Odor Attraction, but Not Repulsion , 2003, Current Biology.

[101]  John R. Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Larva , 2005, Neuron.

[102]  M. Knaden,et al.  Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit , 2015, PLoS biology.

[103]  S. Lockery The computational worm: spatial orientation and its neuronal basis in C. elegans , 2011, Current Opinion in Neurobiology.

[104]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[105]  B. Webb,et al.  Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states , 2015, Journal of The Royal Society Interface.

[106]  Stefan R. Pulver,et al.  Imaging fictive locomotor patterns in larval Drosophila , 2015, Journal of neurophysiology.

[107]  Nils Otto,et al.  The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae , 2017, Journal of Experimental Biology.

[108]  Scott Waddell,et al.  Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila , 2015, Current Opinion in Neurobiology.

[109]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[110]  Barry J. Dickson,et al.  Neuronal Control of Drosophila Walking Direction , 2014, Science.

[111]  Hongbo Jia,et al.  In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons , 2011, Nature Protocols.

[112]  Markus Knaden,et al.  Decoding odor quality and intensity in the Drosophila brain , 2014, eLife.