On distinguishing prime numbers from composite numbers

A new algorithm for testing primality is presented. The algorithm is distinguishable from the lovely algorithms of Solvay and Strassen [36], Miller [27] and Rabin [32] in that its assertions of primality are certain (i.e., provable from Peano's axioms) rather than dependent on unproven hypothesis (Miller) or probability (Solovay-Strassen, Rabin). An argument is presented which suggests that the algorithm runs within time c1ln(n)c2ln(ln(ln(n))) where n is the input, and C1, c2 constants independent of n. Unfortunately no rigorous proof of this running time is yet available.

[1]  S. Ramanujan,et al.  Highly Composite Numbers , 1915 .

[2]  Julia Robinson,et al.  Reduction of an arbitrary diophantine equation to one in 13 unknowns , 1975 .

[3]  L. Mirsky,et al.  The Number of Representations of an Integer as the Sum of a Prime and a k-Free Integer , 1949 .

[4]  Leonard M. Adleman,et al.  Reductions that lie , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[5]  Hugh C. Williams,et al.  Some algorithms for prime testing using generalized Lehmer functions , 1976 .

[6]  Jeffrey C. Lagarias,et al.  On the computational complexity of determining the solvability or unsolvability of the equation ²-²=-1 , 1980 .

[7]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[8]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[9]  Leonard M. Adleman,et al.  Reducibility, randomness, and intractibility (Abstract) , 1977, STOC '77.

[10]  Joseph F. Traub,et al.  Algorithms and Complexity: New Directions and Recent Results , 1976 .

[11]  Leonard M. Adleman,et al.  Computational complexity of decision procedures for polynomials , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[13]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[14]  Leonard M. Adleman,et al.  NP-complete decision problems for quadratic polynomials , 1976, STOC '76.

[15]  J. Cassels,et al.  The Theory of Algebraic Numbers (Carus Mathematical Monograph Number Nine). By Harry Pollard. Pp. 143. 24s. 1950. (John Wiley, New York : Chapman and Hall) , 1951, The Mathematical Gazette.

[16]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[17]  Paul T. Bateman,et al.  Reviews in Number Theory , 1976 .

[18]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[19]  D. H. Lehmer,et al.  New primality criteria and factorizations of 2^{}±1 , 1975 .

[20]  J. Dixon Asymptotically fast factorization of integers , 1981 .

[21]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Tikao Tatuzawa,et al.  On the number of the primes in an arithmetic progression , 1951 .

[23]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[24]  P. Gallagher,et al.  A large sieve density estimate near σ=1 , 1970 .

[25]  Leonard M. Adleman,et al.  Number-theoretic aspects of computational complexity. , 1976 .

[26]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[27]  Leonard M. Adleman,et al.  A subexponential algorithm for the discrete logarithm problem with applications to cryptography , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[28]  Frank Thomson Leighton,et al.  An (^{1/10.89}) primality testing algorithm , 1981 .

[29]  H. C. Williams,et al.  Some observations on primality testing , 1978 .

[30]  Leonard M. Adleman,et al.  Diophantine complexity , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[31]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[32]  W. Leveque,et al.  Review: Mark Kac, Slatistical independence in probability, analysis and number theory , 1960 .

[33]  H. Davenport Multiplicative Number Theory , 1967 .

[34]  M. Rabin DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNCTIONS AS INTRACTABLE AS FACTORIZATION , 1979 .

[35]  Carl Pomerance,et al.  POPULAR VALUES OF EULER'S FUNCTION , 1980 .

[36]  Gary L. Miller,et al.  On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[37]  D. H. Lehmer Strong Carmichael numbers , 1976 .

[38]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[39]  Howard Eves,et al.  An introduction to the history of mathematics , 1953 .