The complexity of forbidden subgraph sandwich problems and the skew partition sandwich problem

The ? graph sandwich problem asks, for a pair of graphs G 1 = ( V , E 1 ) and G 2 = ( V , E 2 ) with E 1 ? E 2 , whether there exists a graph G = ( V , E ) that satisfies property ? and E 1 ? E ? E 2 . We consider the property of being F -free, where F is a fixed graph. We show that the claw-free graph sandwich and the bull-free graph sandwich problems are both NP-complete, but the paw-free graph sandwich problem is polynomial. This completes the study of all cases where F has at most four vertices. A skew partition of a graph G is a partition of its vertex set into four nonempty parts A , B , C , D such that each vertex of A is adjacent to each vertex of B , and each vertex of C is nonadjacent to each vertex of D . We prove that the skew partition sandwich problem is NP-complete, establishing a computational complexity non-monotonicity.

[1]  Martin Charles Golumbic,et al.  Complexity and Algorithms for Graph and Hypergraph Sandwich Problems , 1998, Graphs Comb..

[2]  Celina M. H. de Figueiredo,et al.  The chain graph sandwich problem , 2011, Ann. Oper. Res..

[3]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[4]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[5]  Nicolas Trotignon,et al.  Decomposing Berge graphs and detecting balanced skew partitions , 2013, J. Comb. Theory, Ser. B.

[6]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[7]  Yoshiharu Kohayakawa,et al.  Finding Skew Partitions Efficiently , 2000, J. Algorithms.

[8]  Michel Habib,et al.  Can transitive orientation make sandwich problems easier? , 2007, Discret. Math..

[9]  Pinar Heggernes,et al.  A Parameterized Algorithm for Chordal Sandwich , 2010, CIAC.

[10]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  Celina M. H. de Figueiredo,et al.  The graph sandwich problem for 1-join composition is NP-complete , 2002, Discret. Appl. Math..

[13]  Celina M. H. de Figueiredo,et al.  On the forbidden induced subgraph sandwich problem , 2011, Discret. Appl. Math..

[14]  Stephan Olariu,et al.  Paw-Fee Graphs , 1988, Inf. Process. Lett..

[15]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[16]  Celina M. H. de Figueiredo,et al.  Helly property, clique raphs, complementary graph classes, and sandwich problems , 2010, Journal of the Brazilian Computer Society.

[17]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[18]  Celina M. H. de Figueiredo,et al.  The Pair Completion algorithm for the Homogeneous Set Sandwich Problem , 2006, Inf. Process. Lett..

[19]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[20]  Bruce A. Reed,et al.  Skew partitions in perfect graphs , 2008, Discret. Appl. Math..

[21]  Celina M. H. de Figueiredo,et al.  On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..

[22]  M. Chudnovsky Berge trigraphs , 2006 .

[23]  Sue Whitesides,et al.  An Algorithm for Finding Clique Cut-Sets , 1981, Inf. Process. Lett..

[24]  Bruce A. Reed,et al.  Fast Skew Partition Recognition , 2007, KyotoCGGT.

[25]  Celina M. H. de Figueiredo,et al.  The external constraint 4 nonempty part sandwich problem , 2011, Discret. Appl. Math..

[26]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[27]  Celina M. H. de Figueiredo,et al.  The sandwich problem for cutsets: Clique cutset, k-star cutset , 2006, Discret. Appl. Math..

[28]  Celina M. H. de Figueiredo,et al.  The polynomial dichotomy for three nonempty part sandwich problems , 2010, Discret. Appl. Math..