Explicit characterization of decentralized coprime factors

This paper is concerned with parametrization of all decentralized stabilizing controllers. The auxiliary diagonal system, which is defined by the diagonal elements of Bezout factors, plays an important role in the parametrization of decentralized controllers. This paper gives an explicit characterization of the auxiliary system.

[1]  Vasilios Manousiouthakis On the Parametrization of All Decentralized Stabilizing Controllers , 1989, 1989 American Control Conference.

[2]  C. Jacobson,et al.  A connection between state-space and doubly coprime fractional representations , 1984 .

[3]  Madan G. Singh,et al.  Decentralized Control , 1981 .

[4]  J. H. Chow,et al.  Decentralized stable factors and a parameterization of decentralized controllers , 1994 .

[5]  Charles A. Desoer,et al.  Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators , 1990 .

[6]  A. Ozguler Decentralized control: a stable proper fractional approach , 1990 .

[7]  M. Araki,et al.  Bounds for closed-loop transfer functions of multivariable systems , 1975 .

[8]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[9]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[10]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[11]  G. Vinnicombe,et al.  Robust decentralized control design based on coprime factorization representations and LMI optimization , 1997, Proceedings of the 36th SICE Annual Conference. International Session Papers.

[12]  Noboru Sebe A unified approach to decentralized controller design , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[13]  P. Khargonekar Control System Synthesis: A Factorization Approach (M. Vidyasagar) , 1987 .

[14]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[15]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[16]  Manfred Morari,et al.  Robust Performance of Decentralized Control Systems by Independent Designs , 1987, 1987 American Control Conference.

[17]  K. Glover,et al.  A characterization of all solutions to the four block general distance problem , 1991 .

[18]  Joe H. Chow,et al.  A parametrization approach to optimal H∞ and H2 decentralized control problems , 1993, 1992 American Control Conference.

[19]  H. Rosenbrock Design of multivariable control systems using the inverse Nyquist array , 1969 .

[20]  G. Vinnicombe,et al.  Fixed structure H∞ control design for multiple plants — A coprirne factorization / LMI based approach , 1997, 1997 European Control Conference (ECC).

[21]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.