Efficient Identity-Based Encryption without Pairings and Key Escrow for Mobile Devices

We propose a new construction of identity-based encryption without key escrow over the tradition cryptosystems. The security of our scheme follows from the decisional Diffie-Hellman assumption and the difficulty of a new problem --- modular inversion hidden number problem with error (MIHNPwE). The latter can be seen as a generalization of the modular inversion hidden number problem. We give an analysis on the hardness of MIHNPwE by lattice techniques. In our construction, we generate each user's partial private key in the form of an MIHNPwE instance. The hardness of MIHNPwE provides our scheme with resistance against key-collusion attacks from any number of traitors.

[1]  Ran Canetti,et al.  A Forward-Secure Public-Key Encryption Scheme , 2003, Journal of Cryptology.

[2]  Craig Gentry,et al.  Space-Efficient Identity Based EncryptionWithout Pairings , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[3]  Dan Boneh,et al.  The Decision Diffie-Hellman Problem , 1998, ANTS.

[4]  Vishal Saraswat,et al.  Public Key Encryption with Searchable Keywords Based on Jacobi Symbols , 2007, INDOCRYPT.

[5]  Colin Boyd,et al.  Cryptography and Coding , 1995, Lecture Notes in Computer Science.

[6]  Dan Boneh,et al.  Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles , 2004, IACR Cryptol. ePrint Arch..

[7]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[8]  Tatsuaki Okamoto,et al.  Secure Integration of Asymmetric and Symmetric Encryption Schemes , 1999, CRYPTO.

[9]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[10]  Daniele Micciancio,et al.  The Geometry of Lattice Cryptography , 2011, FOSAD.

[11]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[12]  C. Pandu Rangan,et al.  Progress in Cryptology - INDOCRYPT 2007, 8th International Conference on Cryptology in India, Chennai, India, December 9-13, 2007, Proceedings , 2007, INDOCRYPT.

[13]  David Cash,et al.  Bonsai Trees, or How to Delegate a Lattice Basis , 2010, EUROCRYPT.

[14]  Liqun Chen,et al.  Applications of Multiple Trust Authorities in Pairing Based Cryptosystems , 2002, InfraSec.

[15]  Henri Gilbert,et al.  Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings , 2010, EUROCRYPT.

[16]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[17]  Luminita Vasiu,et al.  Remove Key Escrow from The Identity-Based Encryption System , 2004, IFIP TCS.

[18]  Dániel Marx,et al.  On the Optimality of Planar and Geometric Approximation Schemes , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[19]  Don Coppersmith,et al.  Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities , 1997, Journal of Cryptology.

[20]  Yuliang Zheng,et al.  Advances in Cryptology — ASIACRYPT 2002 , 2002, Lecture Notes in Computer Science.

[21]  Craig Gentry,et al.  Hierarchical ID-Based Cryptography , 2002, ASIACRYPT.

[22]  Roberto Gorrieri,et al.  Foundations of Security Analysis and Design VII , 2014, Lecture Notes in Computer Science.

[23]  Aggelos Kiayias,et al.  Traceable Signatures , 2004, EUROCRYPT.

[24]  Dan Boneh,et al.  The Modular Inversion Hidden Number Problem , 2001, ASIACRYPT.

[25]  Marc Fischlin,et al.  Topics in Cryptology – CT-RSA 2009 , 2009 .

[26]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[27]  Aggelos Kiayias,et al.  BiTR: Built-in Tamper Resilience , 2011, IACR Cryptol. ePrint Arch..

[28]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[29]  Giuseppe Ateniese,et al.  Universally Anonymous IBE Based on the Quadratic Residuosity Assumption , 2009, CT-RSA.

[30]  Clifford C. Cocks An Identity Based Encryption Scheme Based on Quadratic Residues , 2001, IMACC.