Homotopy-preserving medial axis simplification

We present a novel algorithm to compute a simplified medial axis of a polyhedron. Our simplification algorithm tends to remove unstable features of Blum's medial axis. Moreover, our algorithm preserves the topological structure of the original medial axis and ensures that the simplified medial axis has the same homotopy type as Blum's medial axis. We use the separation angle formed by connecting a point on the medial axis to closest points on the boundary as a measure of the stability of the medial axis at the point. The medial axis is decomposed into its parts that are the sheets, seams and junctions. We present a stability measure of each part of the medial axis based on separation angles and examine the relation between the stability measures of adjacent parts. Our simplification algorithm uses iterative pruning of the parts based on efficient local tests. We have applied the algorithm to compute a simplified medial axis of complex models with tens of thousands of triangles and complex topologies.

[1]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Alla Sheffer,et al.  Hexahedral Mesh Generation using the Embedded Voronoi Graph , 1999, Engineering with Computers.

[3]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[4]  Mark A. Ganter,et al.  A skeletal-based solid editor , 1999, SMA '99.

[5]  F. Chazal,et al.  Stability and Finiteness Properties of Medial Axis and Skeleton , 2004 .

[6]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[7]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[8]  Oliver Brock,et al.  Efficient and robust computation of an approximated medial axis , 2004, SM '04.

[9]  George M. Turkiyyah,et al.  Computation of 3D skeletons using a generalized Delaunay triangulation technique , 1995, Comput. Aided Des..

[10]  R. Ho Algebraic Topology , 2022 .

[11]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[12]  Ari Rappoport,et al.  Computing Voronoi skeletons of a 3-D polyhedron by space subdivision , 2002, Comput. Geom..

[13]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[14]  André Lieutier,et al.  Any open bounded subset of Rn has the same homotopy type than its medial axis , 2003, SM '03.

[15]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[16]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[17]  Kaleem Siddiqi,et al.  Geometric Shock-Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution , 1997, CVGIP Graph. Model. Image Process..

[18]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[19]  Daniel Cohen-Or,et al.  Medial axis based solid representation , 2004, SM '04.

[20]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[21]  Krishnan Suresh,et al.  Automating the CAD/CAE dimensional reduction process , 2003, SM '03.

[22]  R. Kikinis,et al.  Characterization and recognition of 3D organ shape in medical image analysis using skeletonization , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[23]  Damian J. Sheehy,et al.  Computing the medial surface of a solid from a domain Delaunay triangulation , 1995, Symposium on Solid Modeling and Applications.

[24]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[25]  Dinesh Manocha,et al.  A Voronoi-based hybrid motion planner , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[26]  Hong Qin,et al.  Medial axis extraction and shape manipulation of solid objects using parabolic PDEs , 2004, SM '04.

[27]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Patrick Shen-Pei Wang,et al.  Analytical Comparison of Thinning Algorithms , 1993, Int. J. Pattern Recognit. Artif. Intell..

[29]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[30]  F. Chazal,et al.  Stability and homotopy of a subset of the medial axis , 2004, SM '04.

[31]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[32]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Wolfgang Heidrich,et al.  Shape simplification based on the medial axis transform , 2003, IEEE Visualization, 2003. VIS 2003..

[34]  Benjamin B. Kimia,et al.  The Shock Scaffold for Representing 3D Shape , 2001, IWVF.

[35]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[36]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.