Incremental Offline/Online PIR (extended version)

Recent private information retrieval (PIR) schemes preprocess the database with a query-independent offline phase in order to achieve sublinear computation during a query-specific online phase. These offline/online protocols expand the set of applications that can profitably use PIR, but they make a critical assumption: that the database is immutable. In the presence of changes such as additions, deletions, or updates, existing schemes must preprocess the database from scratch, wasting prior effort. To address this, we introduce incremental preprocessing for offline/online PIR schemes, allowing the original preprocessing to continue to be used after database changes, while incurring an update cost proportional to the number of changes rather than the size of the database. We adapt two offline/online PIR schemes to use incremental preprocessing and show how it significantly improves the throughput and reduces the latency of applications where the database changes over time.

[1]  Changyu Dong,et al.  A Fast Single Server Private Information Retrieval Protocol with Low Communication Cost , 2014, ESORICS.

[2]  Yiping Ma,et al.  Incremental Offline/Online PIR , 2021 .

[3]  Matthew Green,et al.  A Protocol for Privately Reporting Ad Impressions at Scale , 2016, CCS.

[4]  Srinivas Devadas,et al.  Riffle: An Efficient Communication System With Strong Anonymity , 2016, Proc. Priv. Enhancing Technol..

[5]  Ran Canetti,et al.  Towards Doubly Efficient Private Information Retrieval , 2017, TCC.

[6]  Ian Goldberg,et al.  Improving the Robustness of Private Information Retrieval , 2007 .

[7]  Aggelos Kiayias,et al.  Delegatable pseudorandom functions and applications , 2013, IACR Cryptol. ePrint Arch..

[8]  Helger Lipmaa,et al.  A Simpler Rate-Optimal CPIR Protocol , 2017, Financial Cryptography.

[9]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[10]  Elaine Shi,et al.  Puncturable Pseudorandom Sets and Private Information Retrieval with Near-Optimal Online Bandwidth and Time , 2021, CRYPTO.

[11]  Brent Waters,et al.  Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model , 2015, ASIACRYPT.

[12]  George Danezis,et al.  DP5: A Private Presence Service , 2015, Proc. Priv. Enhancing Technol..

[13]  Moni Naor,et al.  Private Information Retrieval by Keywords , 1998, IACR Cryptol. ePrint Arch..

[14]  Rafail Ostrovsky,et al.  Software protection and simulation on oblivious RAMs , 1996, JACM.

[15]  Amir Herzberg,et al.  RAID-PIR: Practical Multi-Server PIR , 2014, CCSW.

[16]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[17]  Yuval Ishai,et al.  Distributed Point Functions and Their Applications , 2014, EUROCRYPT.

[18]  Srinath T. V. Setty,et al.  Unobservable Communication over Fully Untrusted Infrastructure , 2016, OSDI.

[19]  Yuval Ishai,et al.  Function Secret Sharing: Improvements and Extensions , 2016, CCS.

[20]  Shafi Goldwasser,et al.  Functional Signatures and Pseudorandom Functions , 2014, Public Key Cryptography.

[21]  Carmela Troncoso,et al.  PIR-Tor: Scalable Anonymous Communication Using Private Information Retrieval , 2011, USENIX Security Symposium.

[22]  Yan-Cheng Chang,et al.  Single Database Private Information Retrieval with Logarithmic Communication , 2004, ACISP.

[23]  Ian Goldberg,et al.  Sublinear Scaling for Multi-Client Private Information Retrieval , 2015, Financial Cryptography.

[24]  Srinath T. V. Setty,et al.  PIR with Compressed Queries and Amortized Query Processing , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[25]  Jacques Patarin,et al.  Security of Random Feistel Schemes with 5 or More Rounds , 2004, CRYPTO.

[26]  Brent Waters,et al.  Constrained Pseudorandom Functions and Their Applications , 2013, ASIACRYPT.

[27]  John Black,et al.  Ciphers with Arbitrary Finite Domains , 2002, CT-RSA.

[28]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[29]  Craig Gentry,et al.  Single-Database Private Information Retrieval with Constant Communication Rate , 2005, ICALP.

[30]  Yuval Ishai,et al.  Reducing the Servers’ Computation in Private Information Retrieval: PIR with Preprocessing , 2004, Journal of Cryptology.

[31]  Sarvar Patel,et al.  Private Stateful Information Retrieval , 2018, CCS.

[32]  Daniel Kales,et al.  Revisiting User Privacy for Certificate Transparency , 2019, 2019 IEEE European Symposium on Security and Privacy (EuroS&P).

[33]  Hamid Mozaffari,et al.  Heterogeneous Private Information Retrieval , 2020, NDSS.

[34]  Nick Mathewson,et al.  Tor: The Second-Generation Onion Router , 2004, USENIX Security Symposium.

[35]  Marc-Olivier Killijian,et al.  XPIR : Private Information Retrieval for Everyone , 2016, Proc. Priv. Enhancing Technol..

[36]  Raymond Cheng,et al.  Talek: Private Group Messaging with Hidden Access Patterns , 2020, IACR Cryptol. ePrint Arch..

[37]  Henry Corrigan-Gibbs,et al.  Private Blocklist Lookups with Checklist , 2021, IACR Cryptol. ePrint Arch..

[38]  Srinath T. V. Setty,et al.  Scalable and Private Media Consumption with Popcorn , 2016, NSDI.

[39]  Silvio Micali,et al.  Computationally Private Information Retrieval with Polylogarithmic Communication , 1999, EUROCRYPT.

[40]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[41]  Henry Corrigan-Gibbs,et al.  Private Information Retrieval with Sublinear Online Time , 2020, IACR Cryptol. ePrint Arch..

[42]  Ian Goldberg,et al.  Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.

[43]  Aggelos Kiayias,et al.  Optimal Rate Private Information Retrieval from Homomorphic Encryption , 2015, Proc. Priv. Enhancing Technol..

[44]  Yuval Ishai,et al.  Can We Access a Database Both Locally and Privately? , 2017, TCC.

[45]  Kuang-Ching Wang,et al.  The Design and Operation of CloudLab , 2019, USENIX ATC.

[46]  Dan Boneh,et al.  Constrained Keys for Invertible Pseudorandom Functions , 2017, TCC.

[47]  Elisa Bertino,et al.  Single-Database Private Information Retrieval from Fully Homomorphic Encryption , 2013, IEEE Transactions on Knowledge and Data Engineering.

[48]  Asra Ali,et al.  Communication-Computation Trade-offs in PIR , 2019, IACR Cryptol. ePrint Arch..

[49]  Helger Lipmaa,et al.  First CPIR Protocol with Data-Dependent Computation , 2009, ICISC.