Sol–Gel Synthesis of Robust Metal–Organic Frameworks for Nanoparticle Encapsulation

A new type of composite material involving the in situ immobilization of tin oxide nanoparticles (SnO2‐NPs) within a monolithic metal–organic framework (MOF), the zeolitic imidazolate framework (ZIF)‐8 is presented. SnO2@monoZIF‐8 exploits the mechanical properties, structural resilience, and high density of a monolithic MOF, while leveraging the photocatalytic action of the nanoparticles. The composite displays outstanding photocatalytic properties and represents a critical advance in the field of treating toxic effluents and is a vital validation for commercial application. Crucially, full retention of catalytic activity is observed after ten catalytic cycles.

[1]  Vincent Guillerm,et al.  Confining Functional Nanoparticles into Colloidal Imine-Based COF Spheres by a Sequential Encapsulation-Crystallization Method. , 2017, Chemistry.

[2]  Ashlee J Howarth,et al.  Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. , 2017, Chemical Society reviews.

[3]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[4]  Jun Liang,et al.  Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. , 2017, Chemical Society reviews.

[5]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[6]  T. Berger,et al.  CHAPTER 8:Traps and Interfaces in Photocatalysis: Model Studies on TiO2 Particle Systems , 2016 .

[7]  Andrew E. H. Wheatley,et al.  Facile synthesis of SnO2-PbS nanocomposites with controlled structure for applications in photocatalysis. , 2016, Nanoscale.

[8]  F. Castellano,et al.  Direct observation of triplet energy transfer from semiconductor nanocrystals , 2016, Science.

[9]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[10]  D. Fairen-jimenez,et al.  Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity , 2015 .

[11]  Peng Wang,et al.  Photocatalytic degradation of methylene blue in ZIF-8 , 2014 .

[12]  R. Clowes,et al.  Hierarchical porous metal-organic framework monoliths. , 2014, Chemical communications.

[13]  B. Tang,et al.  The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors , 2014 .

[14]  A. Patra,et al.  Recent development of core–shell SnO2 nanostructures and their potential applications , 2014 .

[15]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[16]  C. Kirschhock,et al.  Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. , 2014, Nanoscale.

[17]  P. Feng,et al.  Selective anion exchange with nanogated isoreticular positive metal-organic frameworks , 2013, Nature Communications.

[18]  M. Zahmakiran Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance. , 2012, Dalton transactions.

[19]  H. Seema,et al.  Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight , 2012, Nanotechnology.

[20]  A. Torrisi,et al.  Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. , 2012, Dalton transactions.

[21]  G. Zhu,et al.  A microporous metal-organic framework with high stability for GC separation of alcohols from water. , 2012, Chemical communications.

[22]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[23]  H. Fu,et al.  Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. , 2012, Chemical communications.

[24]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[25]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[26]  A. Patra,et al.  Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles , 2011 .

[27]  A. K. Ray,et al.  Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes , 2010 .

[28]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[29]  S. Yin,et al.  Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals , 2009 .

[30]  D. Fairen-jimenez,et al.  Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  Jaehee Cho,et al.  Preparation of Highly Luminescent Nanocrystals and Their Application to Light‐Emitting Diodes , 2007 .

[32]  Chunlai Ma,et al.  Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method , 2002 .

[33]  S. Feng,et al.  Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide , 2002 .

[34]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[35]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[36]  J. Brito,et al.  An overview on the improvement of mechanical properties of ceramics nanocomposites , 2015 .

[37]  B. Kandola,et al.  Flame-Retardant Thermoset Nanocomposites for Engineering Applications , 2014 .

[38]  I. Lakatos,et al.  Colloids Surfaces A: Physicochem , 1998 .