Risk-sensitive optimal control of quantum systems

The importance of feedback control is being increasingly appreciated in quantum physics and applications. This paper describes the use of optimal control methods in the design of quantum feedback control systems, and in particular the paper formulates and solves a risk-sensitive optimal control problem. The resulting risk-sensitive optimal control is given in terms of an unnormalized conditional state, whose dynamics include the cost function used to specify the performance objective. The risk-sensitive conditional dynamic equation describes the evolution of our knowledge of the quantum system tempered by our purpose for the controlled quantum system. Robustness properties of risk-sensitive controllers are discussed and an example is provided.

[1]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to risk sensitivity , 1988 .

[2]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[3]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[4]  Ye Xudong Brief Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions , 1999 .

[5]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[6]  E. Fernández-Gaucherand,et al.  Risk-sensitive optimal control of hidden Markov models: structural results , 1997, IEEE Trans. Autom. Control..

[7]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[8]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[9]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[10]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[11]  A. Bensoussan,et al.  Optimal control of partially observable stochastic systems with an exponential-of-integral performance index , 1985 .

[12]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[13]  V. Belavkin Quantum noise, bits and jumps : uncertainties, decoherence, measurements and filtering , 2001 .

[14]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[15]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[16]  Howard Mark Wiseman Quantum trajectories and feedback , 1994 .

[17]  M. James,et al.  Robust and Risk-Sensitive Output Feedback Control for Finite State Machines and Hidden Markov Models , 1994 .

[18]  P. Dupuis,et al.  Robust Properties of Risk-Sensitive Control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[19]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.

[20]  A. C. Doherty,et al.  Sensitivity optimization in quantum parameter estimation , 2001 .

[21]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[22]  V. P. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991 .

[23]  M. James,et al.  Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[24]  M. Sentís Quantum theory of open systems , 2002 .

[25]  Quantum Noise, Bits and Jumps: Uncertainties, Decoherence, Trajectories and Filtering , 2005, quant-ph/0512208.

[26]  Steven I. Marcus,et al.  Risk-sensitive and minimax control of discrete-time, finite-state Markov decision processes , 1999, Autom..

[27]  Kurt Jacobs,et al.  Information, disturbance and Hamiltonian quantum feedback control , 2001 .

[28]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[29]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.