Timing Analysis of Combinational Circuits in Intuitionistic Propositional Logic

Classical logic has so far been the logic of choice in formal hardware verification. This paper proposes the application of intuitionistic logic to the timing analysis of digital circuits. The intuitionistic setting serves two purposes. The model-theoretic properties are exploited to handle the second-order nature of bounded delays in a purely propositional setting without need to introduce explicit time and temporal operators. The proof-theoretic properties are exploited to extract quantitative timing information and to reintroduce explicit time in a convenient and systematic way.We present a natural Kripke-style semantics for intuitionistic propositional logic, as a special case of a Kripke constraint model for Propositional Lax Logic (Information and Computation, Vol. 137, No. 1, 1–33, 1997), in which validity is validity up to stabilisation, and implication ⊃ comes out as “boundedly gives rise to.” We show that this semantics is equivalently characterised by a notion of realisability with stabilisation bounds as realisers. Following this second point of view an intensional semantics for proofs is presented which allows us effectively to compute quantitative stabilisation bounds.We discuss the application of the theory to the timing analysis of combinational circuits. To test our ideas we have implemented an experimental prototype tool and run several examples.

[1]  Michael J. C. Gordon,et al.  Why higher-order logic is a good formalism for specifying and verifying hardware , 1985 .

[2]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[3]  Michael Mendler,et al.  Ternary Simulation: a Reenement of Binary Functions or an Abstraction of Real-time Behaviour? , 1996 .

[4]  Melvin A. Breuer A Note on Three-Valued Logic Simulation , 1972, IEEE Transactions on Computers.

[5]  Michael Yoeli,et al.  Ternary Simulation of Binary Gate Networks , 1977 .

[6]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[7]  Leonard R. Marino,et al.  General theory of metastable operation , 1981, IEEE Transactions on Computers.

[8]  Edward B. Eichelberger,et al.  Hazard Detection in Combinational and Sequential Switching Circuits , 1964, IBM J. Res. Dev..

[9]  Michael Mendler,et al.  Propositional Lax Logic , 1997, Inf. Comput..

[10]  Sharad Malik,et al.  Analysis of cyclic combinational circuits , 1993, ICCAD '93.

[11]  Michael Yoeli,et al.  Application of Ternary Algebra to the Study of Static Hazards , 1964, JACM.

[12]  C. A. R. Hoare,et al.  A model for synchronous switching circuits and its theory of correctness , 1992, Formal Methods Syst. Des..

[13]  Pierangelo Miglioli,et al.  Some Results on Intermediate Constructive Logics , 1989, Notre Dame J. Formal Log..

[14]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[15]  Robert K. Brayton,et al.  Timed Boolean functions - a unified formalism for exact timing analysis , 1994, The Kluwer international series in engineering and computer science.

[16]  Glynn Winskel,et al.  A Compositional Model of MOS Circuits , 1988 .

[17]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[18]  Michel Parigot,et al.  Programming with Proofs: A Second Order Type Theory , 1988, ESOP.

[19]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[20]  A. G. Dragálin Mathematical Intuitionism. Introduction to Proof Theory , 1988 .

[21]  Ben C. Moszkowski,et al.  A Temporal Logic for Multilevel Reasoning about Hardware , 1985, Computer.

[22]  A. Kolmogoroff Zur Deutung der intuitionistischen Logik , 1932 .

[23]  Thomas Kropf,et al.  A new model to uniformly represent the function and timing of MOS circuits and its application to VHDL simulation , 1994, Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC.

[24]  J. Girard,et al.  Proofs and types , 1989 .

[25]  Jan A. Bergstra,et al.  A proof rule for restoring logic circuits , 1983, Integr..

[26]  Ian M. Mitchell,et al.  Proving Newtonian arbiters Correct, almost surely , 1996 .

[27]  Tiziana Margaria,et al.  Model-based Automatic Synthesis and Analysis in Second-Order Monadic Logic , 1997 .

[28]  Michael Yoeli,et al.  On a Ternary Model of Gate Networks , 1979, IEEE Transactions on Computers.

[29]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[30]  P. A. Subrahmanyam Towards a framework for dealing with system timing in Very High Level Silicon Compilers , 1988 .

[31]  C. A. R. Hoare A theory for the derivation of C-mos circuit designs , 1990 .

[32]  David A. Basin,et al.  Hardware Verification using Monadic Second-Order Logic , 1995, CAV.

[33]  Saburo Muroga,et al.  Binary Decision Diagrams , 2000, The VLSI Handbook.

[34]  Michael Mendler,et al.  Newtonian arbiters cannot be proven correct , 1993, Formal Methods Syst. Des..

[35]  Gregor von Bochmann Hardware Specification with Temporal Logic: An Example , 1982, IEEE Transactions on Computers.

[36]  中野 裕,et al.  PX, a computational logic , 1988 .

[37]  Randal E. Bryant,et al.  A Switch-Level Model and Simulator for MOS Digital Systems , 1984, IEEE Transactions on Computers.

[38]  Michael P. Fourman,et al.  Proof and design , 1996, NATO ASI DPD.

[39]  E. Moggi The partial lambda calculus , 1988 .

[40]  Daniel Weise,et al.  Multilevel verification of MOS circuits , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[41]  Hans Eveking,et al.  Formal verification of timing conditions , 1990, Proceedings of the European Design Automation Conference, 1990., EDAC..

[42]  John Herbert Formal verification of basic memory devices , 1988 .

[43]  Robert K. Brayton,et al.  Integrating functional and temporal domains in logic design , 1991 .

[44]  Randal E. Bryant,et al.  Boolean Analysis of MOS Circuits , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[45]  John P. Hayes,et al.  Uncertainty, Energy, and Multiple-Valued Logics , 1986, IEEE Transactions on Computers.

[46]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[47]  Alonzo Church,et al.  Logic, arithmetic, and automata , 1962 .

[48]  Douglas J. Gurr Semantic frameworks for complexity , 1990 .

[49]  Robert K. Brayton,et al.  Timed Boolean Functions , 1994 .

[50]  Torkel Franzén Algorithmic aspects of intuitionistic propositional logic II , 1987 .