Shape from Shading and Photometric Stereo Methods

This TR is a review of shading based shape recovery (shape from shading, photometric stereo methods). It reports about advances in appliedwork and about results in theoretical fundamentals. 1 CITR, Tamaki Campus, University Of Auckland, Auckland, New Zealand 2 Computer Science Department, University of Western Australia, Perth, Australia 3 Pathology Institute, Charite, Humboldt University, Berlin, Germany Shape from Shading and Photometric Stereo Methods Reinhard Klette The University of Auckland, Auckland, New Zealand Ryszard Kozera University of Western Australia, Perth, Australia Karsten Schl uns Humboldt University, Berlin, Germany

[1]  Michael J. Brooks Two Results Concerning Ambiguity in Shape From Shading , 1983, AAAI.

[2]  Alfred M. Bruckstein,et al.  Global Shape from Shading , 1996, Comput. Vis. Image Underst..

[3]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[4]  Gary W. Meyer,et al.  Wavelength selection for synthetic image generation , 1988, Comput. Vis. Graph. Image Process..

[5]  Katsushi Ikeuchi,et al.  Extracting the Shape and Roughness of Specular Lobe Objects Using Four Light Photometric Stereo , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Anna R. Bruss The Eikonal equation: some results applicable to computer vision , 1982 .

[8]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[9]  Wojciech Chojnacki,et al.  Impossible and ambiguous shading patterns , 2004, International Journal of Computer Vision.

[10]  Robert J. Woodham,et al.  Photometric Stereo: A Reflectance Map Technique For Determining Surface Orientation From Image Intensity , 1979, Optics & Photonics.

[11]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[12]  John Oliensis,et al.  Uniqueness in shape from shading , 1991, International Journal of Computer Vision.

[13]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[14]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[15]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[16]  Alfred M. Bruckstein,et al.  Integrability disambiguates surface recovery in two-image photometric stereo , 1992, International Journal of Computer Vision.

[17]  John Oliensis,et al.  A global algorithm for shape from shading , 1993, 1993 (4th) International Conference on Computer Vision.

[18]  Wojciech Chojnacki,et al.  Shading without shape , 1992 .

[19]  R. Kozera Existence and uniqueness in photometric stereo , 1991 .

[20]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[21]  Wojciech Chojnacki,et al.  Circularly symmetric eikonal equations and non-uniqueness in computer vision , 1992 .

[22]  Alfred M. Bruckstein,et al.  Shape from shading: Level set propagation and viscosity solutions , 1995, International Journal of Computer Vision.

[23]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[24]  Wojciech Chojnacki,et al.  Direct computation of shape from shading , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[25]  Alfred M. Bruckstein,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[26]  J. Sethian Curvature and the evolution of fronts , 1985 .