Determining the Time Delay Between Inertial and Visual Sensor Measurements
暂无分享,去创建一个
[1] J. Junkins,et al. Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .
[2] Darius Burschka,et al. Spatio-temporal initialization for IMU to camera registration , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.
[3] Paul Newman,et al. TICSync: Knowing when things happened , 2011, 2011 IEEE International Conference on Robotics and Automation.
[4] Claus Gramkow,et al. On Averaging Rotations , 2004, Journal of Mathematical Imaging and Vision.
[5] Thomas B. Schön,et al. Modeling and Calibration of Inertial and Vision Sensors , 2010, Int. J. Robotics Res..
[6] G. Carter,et al. The generalized correlation method for estimation of time delay , 1976 .
[7] J. Illingworth,et al. Interval-based time synchronisation of sensor data in a mobile robot , 2004, Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004..
[8] Lindsay Kleeman,et al. Time synchronisation and calibration of odometry and range sensors for high-speed mobile robot mapping. , 2008, ICRA 2008.
[9] Y. Chan,et al. A parameter estimation approach to time-delay estimation and signal detection , 1980 .
[10] Thomas Freud. Wiener,et al. Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments , 1962 .
[11] Edwin Olson,et al. A passive solution to the sensor synchronization problem , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[12] J. Junkins,et al. Analytical Mechanics of Space Systems , 2003 .
[13] Bernt Wennberg,et al. State elimination and identifiability of the delay parameter for nonlinear time-delay systems , 2008, Autom..
[14] S. Shankar Sastry,et al. An Invitation to 3-D Vision: From Images to Geometric Models , 2003 .
[15] Xiaohua Xia,et al. Parameter identifiability of Nonlinear systems with time-delay , 2006, IEEE Transactions on Automatic Control.
[16] Kostas Daniilidis,et al. Linear Pose Estimation from Points or Lines , 2002, ECCV.
[17] P. Gans. Data Fitting in the Chemical Sciences: By the Method of Least Squares , 1992 .
[18] Gaurav S. Sukhatme,et al. Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..
[19] F. Markley,et al. Attitude Estimation Using Modified Rodrigues Parameters , 1996 .
[20] Xinhua Zhuang,et al. Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..
[21] S. Shankar Sastry,et al. An Invitation to 3-D Vision , 2004 .
[22] A. B. Chatfield. Fundamentals of high accuracy inertial navigation , 1997 .
[23] Pierre Hellier,et al. A novel temporal calibration method for 3-D ultrasound , 2006, IEEE Transactions on Medical Imaging.
[24] Yuanxin Wu,et al. On 'A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation' , 2013, ArXiv.
[25] Jack B. Kuipers,et al. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .
[26] Paul J. Besl,et al. A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[27] Pascal Morin,et al. A nonlinear observer approach for concurrent estimation of pose, IMU bias and camera-to-IMU rotation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[28] Gérard G. Medioni,et al. Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.
[29] Stefano Soatto,et al. Visual-inertial navigation, mapping and localization: A scalable real-time causal approach , 2011, Int. J. Robotics Res..
[30] Qun Li,et al. Global clock synchronization in sensor networks , 2006, IEEE Transactions on Computers.
[31] Du Q. Huynh,et al. Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.