Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study.

The present study explored differences in dendritic/spine extent across several human cortical regions. Specifically, the basilar dendrites/spines of supragranular pyramidal cells were examined in eight Brodmann's areas (BA) arranged according to Benson's (1993, Behav Neurol 6:75-81) functional hierarchy: primary cortex (somatosensory, BA3-1-2; motor, BA4), unimodal cortex (Wernicke's area, BA22; Broca's area, BA44), heteromodal cortex (supple- mentary motor area, BA6beta; angular gyrus, BA39) and supramodal cortex (superior frontopolar zone, BA10; inferior frontopolar zone, BA11). To capture more general aspects of regional variability, primary and unimodal areas were designated as low integrative regions; heteromodal and supramodal areas were designated as high integrative regions. Tissue was obtained from the left hemisphere of 10 neurologically normal individuals (M(age) = 30 +/- 17 years; five males, five females) and stained with a modified rapid Golgi technique. Ten neurons were sampled from each cortical region (n = 800) and evaluated according to total dendritic length, mean segment length, dendritic segment count, dendritic spine number and dendritic spine density. Despite considerable inter-individual variation, there were significant differences across the eight Brodmann's areas and between the high and low integrative regions for all dendritic and spine measures. Dendritic systems in primary and unimodal regions were consistently less complex than in heteromodal and supramodal areas. The range within these rankings was substantial, with total dendritic length in BA10 being 31% greater than that in BA3-1-2, and dendritic spine number being 69% greater. These findings demonstrate that cortical regions involved in the early stages of processing (e.g. primary sensory areas) generally exhibit less complex dendritic/spine systems than those regions involved in the later stages of information processing (e.g. prefrontal cortex). This dendritic progression appears to reflect significant differences in the nature of cortical processing, with spine-dense neurons at hierarchically higher association levels integrating a broader range of synaptic input than those at lower cortical levels.

[1]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[2]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[3]  G. V. Van Hoesen,et al.  Orbitofrontal cortex pathology in Alzheimer's disease. , 2000, Cerebral cortex.

[4]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[5]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[6]  D. Lewis,et al.  Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. , 2000, Cerebral cortex.

[7]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[8]  F. Helmchen Dendrites as biochemical compartments , 1999 .

[9]  J. Régis,et al.  Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area. , 1998, Cerebral cortex.

[10]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[11]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[12]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[13]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[14]  G. Elston,et al.  Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP , 1998, Neuroreport.

[15]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[16]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[17]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[18]  L. L. Porter,et al.  Morphological Characterization of a Cortico-cortical relay in the cat sensorimotor cortex. , 1997, Cerebral cortex.

[19]  D. Weinberger,et al.  Genetic variability of human brain size and cortical gyral patterns. , 1997, Brain : a journal of neurology.

[20]  R. Cabeza,et al.  Imaging Cognition: An Empirical Review of PET Studies with Normal Subjects , 1997, Journal of Cognitive Neuroscience.

[21]  B. Anderson,et al.  Age and hemisphere effects on dendritic structure. , 1996, Brain : a journal of neurology.

[22]  M G Rosa,et al.  Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: a Lucifer yellow intracellular injection. , 1996, Cerebral cortex.

[23]  B. Katz The Neurology of Thinking , 1996 .

[24]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[25]  H. Barbas,et al.  Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex , 1995, Neuroscience & Biobehavioral Reviews.

[26]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[27]  J. Morrison,et al.  Human orbitofrontal cortex: Cytoarchitecture and quantitative immunohistochemical parcellation , 1995, The Journal of comparative neurology.

[28]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[29]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[30]  M. Phelps,et al.  Developmental changes in brain metabolism in sedated rhesus macaques and vervet monkeys revealed by positron emission tomography. , 1995, Cerebral cortex.

[31]  J. Bolz,et al.  Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[33]  A. Dahlström,et al.  Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer Yellow microinjections , 1995, Journal of Neuroscience Methods.

[34]  Michael S. Gazzaniga,et al.  Cortical surface modeling reveals gross morphometric correlates of individual differences , 1995 .

[35]  H. Mayberg Brain Activation , 1994, Neurology.

[36]  E. Knudsen Supervised learning in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Flood Critical issues in the analysis of dendritic extent in aging humans, primates, and rodents , 1993, Neurobiology of Aging.

[38]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[39]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[40]  G. Ojemann,et al.  Quantitative Dendritic and Spine Analyses of Speech Cortices: A Case Study , 1993, Brain and Language.

[41]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[42]  D. Benson Prefrontal abilities. , 1993, Behavioural neurology.

[43]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. I. Lifespan changes , 1993, The Journal of comparative neurology.

[44]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. II. Gender, hemispheric, and environmental factors , 1993, The Journal of comparative neurology.

[45]  Richard S. J. Frackowiak,et al.  The anatomy of phonological and semantic processing in normal subjects. , 1992, Brain : a journal of neurology.

[46]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[47]  S. W. Jaslove The integrative properties of spiny distal dendrites , 1992, Neuroscience.

[48]  H. Barbas,et al.  Diverse thalamic projections to the prefrontal cortex in the rhesus monkey , 1991, The Journal of comparative neurology.

[49]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[50]  C. Horner,et al.  Methods of estimation of spine density--are spines evenly distributed throughout the dendritic field? , 1991, Journal of anatomy.

[51]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[52]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[53]  A. Scheibel,et al.  A quantitative study of dendrite complexity in selected areas of the human cerebral cortex , 1990, Brain and Cognition.

[54]  T. Wiesel,et al.  Local circuits and ocular dominance columns in monkey striate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[57]  J. Mazziotta,et al.  Positron emission tomography study of human brain functional development , 1987, Annals of neurology.

[58]  H. B. M. Uylings,et al.  The metric analysis of three-dimensional dendritic tree patterns: a methodological review , 1986, Journal of Neuroscience Methods.

[59]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[60]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[61]  I. Fried,et al.  Dendritic organization of the anterior speech area , 1985, Experimental Neurology.

[62]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[63]  P. E. Roland,et al.  Metabolic measurements of the working frontal cortex in man , 1984, Trends in Neurosciences.

[64]  A. Galaburda,et al.  Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. , 1984, Archives of neurology.

[65]  P. Strick,et al.  The origin of thalamic inputs to the arcuate premotor and supplementary motor areas , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J. D. Ruiter The influence of post-mortem fixation delay on the reliability of the Golgi silver impregnation , 1983, Brain Research.

[67]  J. D. de Ruiter The influence of post-mortem fixation delay on the reliability of the Golgi silver impregnation. , 1983, Brain research.

[68]  Dr. Juhani Hyvärinen The Parietal Cortex of Monkey and Man , 1982, Studies of Brain Function.

[69]  J. Hyvärinen Posterior parietal lobe of the primate brain. , 1982, Physiological reviews.

[70]  T. Powell,et al.  A combined golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey , 1981, Neuroscience.

[71]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[72]  Alan Peters,et al.  A technique for estimating total spine numbers on golgi‐impregnated dendrites , 1979, The Journal of comparative neurology.

[73]  B. Larsen,et al.  Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. , 1979, Science.

[74]  Juhani Hyvärinen,et al.  Distribution of visual and somatic functions in the parietal associative area 7 of the monkey , 1979, Brain Research.

[75]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[76]  R. S. Williams,et al.  THE GOLGI RAPID METHOD IN CLINICAL NEUROPATHOLOGY: THE MORPHOLOGIC CONSEQUENCES OF SUBOPTIMAL FIXATION , 1978, Journal of neuropathology and experimental neurology.

[77]  A. Scheibel,et al.  Chapter 4 – The Methods of Golgi , 1978 .

[78]  J. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents , 1977, Brain Research.

[79]  John Q. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents , 1977, Brain Research.

[80]  L. Sokoloff,et al.  RELATION BETWEEN PHYSIOLOGICAL FUNCTION AND ENERGY METABOLISM IN THE CENTRAL NERVOUS SYSTEM , 1977, Journal of neurochemistry.

[81]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[82]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[83]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[84]  A. Scheibel,et al.  Pattern and field in cortical structure: The rabbit , 1967, The Journal of comparative neurology.

[85]  A. Scheibel,et al.  Synaptic loci on parietal cortical neurons: terminations of corpus callosum fibers. , 1967, Science.

[86]  A. Scheibel,et al.  Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. , 1967, Experimental neurology.

[87]  N. Geschwind Disconnexion syndromes in animals and man. II. , 1965, Brain : a journal of neurology.

[88]  M. Diamond,et al.  The effects of an enriched environment on the histology of the rat cerebral cortex , 1964, The Journal of comparative neurology.

[89]  Walle J. H. Nauta,et al.  Connections of the Cerebral Cortex , 1964 .

[90]  M. A. Macconaill Die Architektonik des menschlichen Stirnhirns , 1963 .

[91]  E. Ramón-Moliner,et al.  An attempt at classifying nerve cells on the basis of their dendritic patterns , 1962, The Journal of comparative neurology.

[92]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[93]  J. Schadé,et al.  Changes during growth in the volume and surface area of cortical neurons in the rabbit. , 1960, Experimental neurology.

[94]  S. Bok Histonomy of the cerebral cortex , 1959 .

[95]  R. Lillie,et al.  Manual of Histologic and Special Staining Techniques , 1958 .

[96]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[97]  W. E. Clark,et al.  The Thalamic Connections of the Parietal and Frontal Lobes of the Brain in the Monkey , 1935 .

[98]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[99]  S. R. Y. Cajal,et al.  Les nouvelles idées sur la structure du système nerveux chez l'homme et chez les vertébrés , 1894 .