Local Regression and Likelihood

The Origins of Local Regression.- Local Regression Methods.- Fitting with LOCFIT.- Local Likelihood Estimation.- Density Estimation.- Flexible Local Regression.- Survival and Failure Time Analysis.- Discrimination and Classification.- Variance Estimation and Goodness of Fit.- Bandwidth Selection.- Adaptive Parameter Choice.- Computational Methods.- Optimizing Local Regression.

[1]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[2]  K. Wallis Seasonal Adjustment and Relations Between Variables , 1974 .

[3]  John M. Chambers,et al.  Programming With Data , 1998 .

[4]  Bernd Droge,et al.  Some Comments on Cross-Validation , 1996 .

[5]  J. V. Ryzin,et al.  Regression Analysis with Randomly Right-Censored Data , 1981 .

[6]  M. C. Jones,et al.  Locally parametric nonparametric density estimation , 1996 .

[7]  S. Weisberg,et al.  An Introduction to Regression Graphics , 1994 .

[8]  D. M. Titterington,et al.  A Comparative Study of Kernel-Based Density Estimates for Categorical Data , 1980 .

[9]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[10]  N. Brinkman Ethanol Fuel-A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions , 1981 .

[11]  C. Loader Local Likelihood Density Estimation , 1996 .

[12]  J. L. Jaech,et al.  Statistical methods in nuclear material control , 1973 .

[13]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[14]  M. Bartlett Periodogram analysis and continuous spectra. , 1950, Biometrika.

[15]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[16]  Shean-Tsong Chiu,et al.  Bandwidth selection for kernel density estimation , 1991 .

[17]  Hans-Georg Müller,et al.  Smooth Optimum Kernel Estimators of Densities, Regression Curves and Modes , 1984 .

[18]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[19]  W. Beggs,et al.  Statistical methods for nuclear material management , 1988 .

[20]  A. Izenman,et al.  Philatelic Mixtures and Multimodal Densities , 1988 .

[21]  L. Brown,et al.  Information Inequality Bounds on the Minimax Risk (with an Application to Nonparametric Regression) , 1991 .

[22]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[23]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[24]  M. Lejeune,et al.  Smooth estimators of distribution and density functions , 1992 .

[25]  Jianqing Fan,et al.  Adaptive Order Polynomial Fitting: Bandwidth Robustification and Bias Reduction , 1995 .

[26]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[27]  Brian D. Ripley,et al.  Flexible Non-linear Approaches to Classification , 1994 .

[28]  Michael Buckley,et al.  A graphical method for estimating the residual variance in nonparametric regression , 1989 .

[29]  R. Gentleman,et al.  Local full likelihood estimation for the proportional hazards model. , 1991, Biometrics.

[30]  H. Weyl On the Volume of Tubes , 1939 .

[31]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[32]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[33]  D. W. Scott,et al.  The L 1 Method for Robust Nonparametric Regression , 1994 .

[34]  Satterthwaite Fe An approximate distribution of estimates of variance components. , 1946 .

[35]  Brian S. Yandell,et al.  A local polynomial jump-detection algorithm in nonparametric regression , 1998 .

[36]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[37]  T. Isaksson,et al.  New approach for distance measurement in locally weighted regression , 1994 .

[38]  G. Wahba Spline models for observational data , 1990 .

[39]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[40]  Terence P. Speed,et al.  The Role of Statistics in Nuclear Materials Accounting: Issues and Problems , 1986 .

[41]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[42]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[43]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[44]  T. A. Boden,et al.  Trends `91: A compendium of data on global change---highlights , 1992 .

[45]  Thomas M. Stoker Smoothing bias in density derivative estimation , 1993 .

[46]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[47]  Vladimir Katkovnik,et al.  On Multiple Window Local Polynomial Approximation with Varying Adaptive Bandwidths , 1998, COMPSTAT.

[48]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[49]  U. Grenander,et al.  Statistical Spectral Analysis of Time Series Arising from Stationary Stochastic Processes , 1953 .

[50]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[51]  D. Siegmund,et al.  Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field , 1995 .

[52]  David R. Cox,et al.  The statistical analysis of series of events , 1966 .

[53]  Adrian Bowman,et al.  On the use of nonparametric regression for model checking , 1989 .

[54]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[55]  G. V. Schiaparelli,et al.  Sul modo di ricavare la vera espressione delle leggi della natura dalle curve empiriche , 1867 .

[56]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[57]  N. Tuma,et al.  Local hazard models. , 1990, Sociological methodology.

[58]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[59]  Sue Leurgans,et al.  Linear models, random censoring and synthetic data , 1987 .

[60]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[61]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[62]  James Stephen Marron,et al.  A Personal View of Smoothing and Statistics , 1996 .

[63]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[64]  Jerome Sacks,et al.  Confidence Bands for Regression Functions , 1985 .

[65]  G. Lugosi,et al.  On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates , 1994 .

[66]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[67]  Jeffrey S. Simonoff,et al.  Probability estimation via smoothing in sparse contingency tables with ordered categories , 1987 .

[68]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[69]  H. Müller,et al.  Hazard rate estimation under random censoring with varying kernels and bandwidths. , 1994, Biometrics.

[70]  Jiayang Sun,et al.  Simultaneous confidence bands for linear regression with heteroscedastic errors , 1995 .

[71]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[72]  John Alan McDonald,et al.  Smoothing with split linear fits , 1986 .

[73]  J. Staniswalis The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .

[74]  Julius Shiskin,et al.  The X-11 variant of the census method II seasonal adjustment program , 1965 .

[75]  W. Härdle Applied Nonparametric Regression , 1991 .

[76]  Dag Tjøstheim,et al.  Linearity Testing using Local Polynomial Approximation , 1998 .

[77]  Theo Gasser,et al.  Finite-Sample Variance of Local Polynomials: Analysis and Solutions , 1996 .

[78]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[79]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[80]  H. Hotelling Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .

[81]  Lawrence D. Brown,et al.  Superefficiency in Nonparametric Function Estimation , 1997 .

[82]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[83]  R. H. Farrell On the Best Obtainable Asymptotic Rates of Convergence in Estimation of a Density Function at a Point , 1972 .

[84]  H. Akaike A new look at the statistical model identification , 1974 .

[85]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[86]  Frederick Robertson Macaulay,et al.  The Smoothing of Time Series , 1931 .

[87]  E. F. Schuster,et al.  On the Nonconsistency of Maximum Likelihood Nonparametric Density Estimators , 1981 .

[88]  W. S. Meisel,et al.  General Estimates of the Intrinsic Variability of Data in Nonlinear Regression Models , 1976 .

[89]  Jianming Ye On Measuring and Correcting the Effects of Data Mining and Model Selection , 1998 .

[90]  Richard R. Picard,et al.  Statistical methods for nuclear materials safeguards: an overview , 1982 .

[91]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[92]  Brian D. Ripley,et al.  Modern Applied Statistics with S-Plus Second edition , 1997 .

[93]  Jerome Sacks,et al.  LINEAR ESTIMATION FOR APPROXIMATELY LINEAR MODELS , 1978 .

[94]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[95]  W. Cleveland,et al.  Computational methods for local regression , 1991 .

[96]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[97]  A. N. Shiryaev,et al.  Minimax Weights in a Trend Detection Problem of a Random Process , 1971 .

[98]  H. Müller CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .

[99]  C. Loader Bandwidth selection: classical or plug-in? , 1999 .

[100]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[101]  C. Loader CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .

[102]  S. Rice The Distribution of the Maxima of a Random Curve , 1939 .

[103]  C. J. Stone,et al.  Logspline Density Estimation for Censored Data , 1992 .

[104]  Grace Wahba,et al.  Testing the (Parametric) Null Model Hypothesis in (Semiparametric) Partial and Generalized Spline Models , 1988 .

[105]  Nils Lid Hjort,et al.  Dynamic Likelihood Hazard Rate Estimation , 1993 .

[106]  Hilary L. Seal,et al.  Graduation by piecewise cubic polynomials: A historical review , 1981 .

[107]  Ørnulf Borgan,et al.  On the theory of moving average graduation , 1979 .

[108]  Peter Hall,et al.  A Geometrical Method for Removing Edge Effects from Kernel-Type Nonparametric Regression Estimators , 1991 .

[109]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[110]  Paul L. Speckman,et al.  Confidence bands in nonparametric regression , 1993 .

[111]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[112]  W. Cleveland Coplots, nonparametric regression, and conditionally parametric fits , 1994 .

[113]  Day Ne,et al.  A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT , 1967 .

[114]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[115]  David Ruppert,et al.  Local polynomial variance-function estimation , 1997 .

[116]  Jerome H. Friedman,et al.  Smoothing of Scatterplots , 1982 .

[117]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[118]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[119]  J. Anderson Separate sample logistic discrimination , 1972 .

[120]  W. Cleveland,et al.  Smoothing by Local Regression: Principles and Methods , 1996 .

[121]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[122]  Mikis D. Stasinopoulos,et al.  Mean and Dispersion Additive Models , 1996 .

[123]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[124]  E. L. De Forest,et al.  On Adjustment Formulas , 1877 .

[125]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[126]  H. Müller Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .

[127]  J. Durbin,et al.  Local trend estimation and seasonal adjustment of economic and social time series (with discussion) , 1982 .

[128]  Richard A. Johnson,et al.  Some Angular-Linear Distributions and Related Regression Models , 1978 .

[129]  Ronald D. Snee,et al.  Validation of Regression Models: Methods and Examples , 1977 .

[130]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[131]  J. Marron,et al.  Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation , 1987 .

[132]  Adrian Bowman,et al.  On the Use of Nonparametric Regression for Checking Linear Relationships , 1993 .

[133]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[134]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[135]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[136]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[137]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[138]  D. Aldous Probability Approximations via the Poisson Clumping Heuristic , 1988 .

[139]  I. James,et al.  Linear regression with censored data , 1979 .

[140]  A. Kimber,et al.  A Statistical Analysis of Batting in Cricket , 1993 .

[141]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[142]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[143]  David Firth,et al.  Model checking with nonparametric curves , 1991 .

[144]  M. A. Moran,et al.  PARAMETRIC AND KERNEL DENSITY METHODS IN DISCRIMINANT ANALYSIS: ANOTHER COMPARISON , 1986 .

[145]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[146]  Jerome Sacks,et al.  ASYMPTOTICALLY OPTIMUM KERNELS FOR DENSITY ESTIMATION AT A POINT , 1981 .

[147]  David Ruppert,et al.  Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .

[148]  Thomas A. Severini,et al.  Diagnostics for Assessing Regression Models , 1991 .

[149]  D. Cox,et al.  Analysis of Survival Data. , 1986 .

[150]  C. Heyde,et al.  Quasi-likelihood and its application , 1997 .

[151]  B. Ismail,et al.  Estimation of jump points in nonparametric regression through residual analysis , 1997 .

[152]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[153]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[154]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[155]  Andreas Krause,et al.  The basics of S and S-Plus , 1997 .

[156]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[157]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[158]  V. Katkovnik Adaptive local polynomial periodogram for time-varying frequency estimation , 1996, Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96).

[159]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[160]  Stephen M. Stigler,et al.  Mathematical Statistics in the Early States , 1978 .

[161]  T. Gasser,et al.  A Flexible and Fast Method for Automatic Smoothing , 1991 .

[162]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[163]  P. Bickel,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 1973 .

[164]  M. C. Jones,et al.  On optimal data-based bandwidth selection in kernel density estimation , 1991 .

[165]  D. W. Scott,et al.  Kernel density estimation revisited , 1977 .

[166]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[167]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[168]  H. Scheffé The Analysis of Variance , 1960 .

[169]  Zhiliang Ying,et al.  Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data , 1991 .

[170]  Jeffrey S. Simonoff,et al.  Smoothing categorical data , 1995 .

[171]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[172]  Allan R. Wilks,et al.  The new S language: a programming environment for data analysis and graphics , 1988 .

[173]  Jianqing Fan,et al.  Censored Regression - Local Linear-approximations and Their Applications , 1994 .

[174]  E. Mammen,et al.  Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .

[175]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[176]  R. Cook Detection of influential observation in linear regression , 2000 .

[177]  P. Whittle On the Smoothing of Probability Density Functions , 1958 .

[178]  G. Oehlert A note on the delta method , 1992 .

[179]  B. Efron The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis , 1975 .

[180]  Vladimir Katkovnik,et al.  A new method for varying adaptive bandwidth selection , 1999, IEEE Trans. Signal Process..

[181]  David V. Hinkley,et al.  Inference about the change-point in a sequence of binomial variables , 1970 .

[182]  R. Nigel Horspool,et al.  C Programming in the Berkeley Unix Environment , 1987 .

[183]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[184]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[185]  Werner Stuetzle,et al.  Some comments on the asymptotic behavior of robust smoothers , 1979 .

[186]  Daniel Q. Naiman,et al.  Volumes of Tubular Neighborhoods of Spherical Polyhedra and Statistical Inference , 1990 .

[187]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[188]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[189]  Rupert G. Miller,et al.  Regression with censored data , 1982 .

[190]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[191]  C. Loader Inference for a hazard rate change point , 1991 .

[192]  Lajos Horváth,et al.  On $L_p$-Norms of Multivariate Density Estimators , 1991 .

[193]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[194]  Jiayang Sun Tail probabilities of the maxima of Gaussian random fields , 1993 .

[195]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[196]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[197]  T. Anderson Statistical analysis of time series , 1974 .

[198]  H. Daniels The Estimation of Spectral Densities , 1962 .

[199]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[200]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[201]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[202]  W. Härdle,et al.  Uniform Consistency of a Class of Regression Function Estimators , 1984 .

[203]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[204]  Vladimir I. Piterbarg,et al.  On the convergence rate of maximal deviation distribution for kernel regression estimates , 1984 .

[205]  Philip C. Spector Introduction to S and S-Plus , 1995 .

[206]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[207]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[208]  E. Nadaraya On Estimating Regression , 1964 .

[209]  Charles C. Taylor,et al.  Bootstrap choice of the smoothing parameter in kernel density estimation , 1989 .

[210]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[211]  R. L. Eubank,et al.  A bias reduction theorem with applications in nonparametric regression , 1991 .

[212]  Prakasa Rao Nonparametric functional estimation , 1983 .

[213]  Ljubisa Stankovic,et al.  Periodogram with varying and data-driven window length , 1998, Signal Process..

[214]  Mark G. Low Renormalizing Upper and Lower Bounds for Integrated Risk in the White Noise Model , 1993 .