Single-neuron criticality optimizes analog dendritic computation

Active dendritic branchlets enable the propagation of dendritic spikes, whose computational functions remain an open question. Here we propose a concrete function to the active channels in large dendritic trees. Modelling the input-output response of large active dendritic arbors subjected to complex spatio-temporal inputs and exhibiting non-stereotyped dendritic spikes, we find that the dendritic arbor can undergo a continuous phase transition from a quiescent to an active state, thereby exhibiting spontaneous and self-sustained localized activity as suggested by experiments. Analogously to the critical brain hypothesis, which states that neuronal networks self-organize near criticality to take advantage of its specific properties, here we propose that neurons with large dendritic arbors optimize their capacity to distinguish incoming stimuli at the critical state. We suggest that “computation at the edge of a phase transition” is more compatible with the view that dendritic arbors perform an analog rather than a digital dendritic computation.

[1]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[2]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[3]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[4]  M. Stewart,et al.  Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea‐pig hippocampus. , 1992, The Journal of physiology.

[5]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[6]  O. Sporns Networks of the Brain , 2010 .

[7]  B. Litt,et al.  Long-range temporal correlations in epileptogenic and non-epileptogenic human hippocampus , 2004, Neuroscience.

[8]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[9]  J. Winn,et al.  Brain , 1878, The Lancet.

[10]  M. A. Muñoz,et al.  Self-organization without conservation: are neuronal avalanches generically critical? , 2010, 1001.3256.

[11]  Valeri A. Makarov,et al.  Wave-Processing of Long-Scale Information by Neuronal Chains , 2013, PloS one.

[12]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[13]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[14]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[15]  E Gould,et al.  Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Leonardo L. Gollo,et al.  Active Dendrites Enhance Neuronal Dynamic Range , 2009, PLoS Comput. Biol..

[17]  A. N. Mamelak,et al.  Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans , 2005, Neuroscience.

[18]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[19]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[20]  C. Stevens,et al.  A Universal Property of Axonal and Dendritic Arbors , 2010, Neuron.

[21]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[22]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[23]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[24]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[25]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[26]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[27]  M. Copelli,et al.  Deterministic excitable media under Poisson drive: power law responses, spiral waves, and dynamic range. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Alex S. Ferecskó,et al.  Analysis of morphological features of thalamocortical neurons from the ventroposterolateral nucleus of the cat , 2010, The Journal of comparative neurology.

[29]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[30]  Shimon Marom,et al.  Self-organized criticality in single-neuron excitability. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[32]  Olle Eriksson,et al.  Vanishing Magnetic Interaction in Ferromagnetic Thin Films , 2005 .

[33]  Hugo Cornelis,et al.  Dendritic Excitability Modulates Dendritic Information Processing in a Purkinje Cell Model , 2009, Front. Comput. Neurosci..

[34]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[35]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[36]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[37]  Boris S. Gutkin,et al.  The Role of Ongoing Dendritic Oscillations in Single-Neuron Dynamics , 2009, PLoS Comput. Biol..

[38]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[39]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[40]  Y. Jan,et al.  Branching out: mechanisms of dendritic arborization , 2010, Nature Reviews Neuroscience.

[41]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[42]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[43]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[44]  Mauro Copelli,et al.  Physics of psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Bruce W. Knight,et al.  Frontiers in Computational Neuroscience Computational Neuroscience Materials and Methods Surgical Preparation , 2022 .

[46]  M. Nicolelis,et al.  Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle , 2010, PloS one.

[47]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[48]  Hiroyoshi Miyakawa,et al.  A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons , 2008, The European journal of neuroscience.

[49]  Mauro Copelli,et al.  Dynamic range of hypercubic stochastic excitable media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Olaf Sporns,et al.  Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[51]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[52]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[53]  R K Wong,et al.  Dendritic mechanisms underlying penicillin-induced epileptiform activity. , 1979, Science.

[54]  Antonio C. Roque,et al.  A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina , 2009, PloS one.

[55]  Antonio C. Roque,et al.  Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses , 2012, PloS one.

[56]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[57]  Leonardo L. Gollo,et al.  Statistical physics approach to dendritic computation: the excitable-wave mean-field approximation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  M. Häusser,et al.  The Origin of the Complex Spike in Cerebellar Purkinje Cells , 2008, The Journal of Neuroscience.

[59]  Mauro Copelli,et al.  Response of electrically coupled spiking neurons: a cellular automaton approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  R. Ramaswamy,et al.  Scaling behavior in probabilistic neuronal cellular automata. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Joaquín Marro,et al.  Nonequilibrium Phase Transitions in Lattice Models: Lattice gases with reaction , 1999 .

[62]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[63]  Woodrow L. Shew,et al.  Predicting criticality and dynamic range in complex networks: effects of topology. , 2010, Physical review letters.

[64]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[65]  Leonardo L. Gollo,et al.  Signal integration enhances the dynamic range in neuronal systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[67]  Cian O'Donnell,et al.  Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes , 2010, PLoS Comput. Biol..

[68]  P. Bak,et al.  Adaptive learning by extremal dynamics and negative feedback. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Pedro V. Carelli,et al.  Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. , 2005, Journal of neurophysiology.