Depth Completion From Sparse LiDAR Data With Depth-Normal Constraints

Depth completion aims to recover dense depth maps from sparse depth measurements. It is of increasing importance for autonomous driving and draws increasing attention from the vision community. Most of the current competitive methods directly train a network to learn a mapping from sparse depth inputs to dense depth maps, which has difficulties in utilizing the 3D geometric constraints and handling the practical sensor noises. In this paper, to regularize the depth completion and improve the robustness against noise, we propose a unified CNN framework that 1) models the geometric constraints between depth and surface normal in a diffusion module and 2) predicts the confidence of sparse LiDAR measurements to mitigate the impact of noise. Specifically, our encoder-decoder backbone predicts the surface normal, coarse depth and confidence of LiDAR inputs simultaneously, which are subsequently inputted into our diffusion refinement module to obtain the final completion results. Extensive experiments on KITTI depth completion dataset and NYU-Depth-V2 dataset demonstrate that our method achieves state-of-the-art performance. Further ablation study and analysis give more insights into the proposed components and demonstrate the generalization capability and stability of our model.

[1]  Mårten Sjöström,et al.  Depth-based inpainting for disocclusion filling , 2014, 2014 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON).

[2]  Ruigang Yang,et al.  Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network , 2018, ECCV.

[3]  Weizhang Huang,et al.  Image Segmentation With Eigenfunctions of an Anisotropic Diffusion Operator , 2014, IEEE Transactions on Image Processing.

[4]  Jianjun Yuan,et al.  Anisotropic Diffusion Model Based on a New Diffusion Coefficient and Fractional Order Differential for Image Denoising , 2016, Int. J. Image Graph..

[5]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[6]  Steven Lake Waslander,et al.  In Defense of Classical Image Processing: Fast Depth Completion on the CPU , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[7]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[9]  Martin Kleinsteuber,et al.  A Joint Intensity and Depth Co-sparse Analysis Model for Depth Map Super-resolution , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Camillo J. Taylor,et al.  DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[12]  Michael Felsberg,et al.  Propagating Confidences through CNNs for Sparse Data Regression , 2018, BMVC.

[13]  Jan Kautz,et al.  Learning Affinity via Spatial Propagation Networks , 2017, NIPS.

[14]  Michael Felsberg,et al.  Confidence Propagation through CNNs for Guided Sparse Depth Regression , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Jianfei Cai,et al.  A diffusion approach to seeded image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Sertac Karaman,et al.  Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Yoshimitsu Aoki,et al.  Depth image enhancement using local tangent plane approximations , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Wilfried Philips,et al.  Learning Morphological Operators for Depth Completion , 2018, ACIVS.

[21]  Horst Bischof,et al.  Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Hujun Bao,et al.  Robust stereo matching with surface normal prediction , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Xiaojin Gong,et al.  Guided Depth Enhancement via Anisotropic Diffusion , 2013, PCM.

[24]  Dinesh Manocha,et al.  TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents , 2018, AAAI.

[25]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[26]  Yinda Zhang,et al.  Deep Depth Completion of a Single RGB-D Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Ruigang Yang,et al.  Learning Depth with Convolutional Spatial Propagation Network , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Simon Lucey,et al.  Deep Convolutional Compressed Sensing for LiDAR Depth Completion , 2018, ACCV.

[29]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[30]  Sertac Karaman,et al.  Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[31]  Thomas Brox,et al.  Sparsity Invariant CNNs , 2017, 2017 International Conference on 3D Vision (3DV).

[32]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[34]  Marc Pollefeys,et al.  Semantically Guided Depth Upsampling , 2016, GCPR.

[35]  Xiaogang Wang,et al.  HMS-Net: Hierarchical Multi-Scale Sparsity-Invariant Network for Sparse Depth Completion , 2018, IEEE Transactions on Image Processing.

[36]  Renjie Liao,et al.  GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[37]  Lei Zhu,et al.  Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion , 2014 .

[38]  Yunchao Wei,et al.  CCNet: Criss-Cross Attention for Semantic Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Changick Kim,et al.  Depth-Based Disocclusion Filling for Virtual View Synthesis , 2012, 2012 IEEE International Conference on Multimedia and Expo.

[40]  Fawzi Nashashibi,et al.  Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation , 2018, 2018 International Conference on 3D Vision (3DV).

[41]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[42]  Wei Xu,et al.  Unsupervised Learning of Geometry with Edge-aware Depth-Normal Consistency , 2017, AAAI.

[43]  Takeo Kanade,et al.  Distributed cosegmentation via submodular optimization on anisotropic diffusion , 2011, 2011 International Conference on Computer Vision.

[44]  Richard J. Radke,et al.  Filling large holes in LiDAR data by inpainting depth gradients , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[45]  Juho Kannala,et al.  Depth Map Inpainting under a Second-Order Smoothness Prior , 2013, SCIA.

[46]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[47]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[48]  Deng Cai,et al.  Depth Image Inpainting: Improving Low Rank Matrix Completion With Low Gradient Regularization , 2017, IEEE Transactions on Image Processing.

[49]  Ali Gooya,et al.  A Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm , 2015 .

[50]  Gabriel J. Brostow,et al.  Patch Based Synthesis for Single Depth Image Super-Resolution , 2012, ECCV.

[51]  Jilin Liu,et al.  Guided depth enhancement via a fast marching method , 2013, Image Vis. Comput..