Automated computation of the fundamental matrix for vision based construction site applications

Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT+normalized eight-point algorithm+RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640x480) involving scenes of the built environment.

[1]  Ioannis Brilakis,et al.  Auto-Calibration of a Camera System Using Image-Alignment , 2009 .

[2]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[3]  Ioannis Brilakis,et al.  On-Site 3D Vision Tracking of Construction Personnel , 2008 .

[4]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[5]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[6]  Xavier Armangué,et al.  Overall view regarding fundamental matrix estimation , 2003, Image Vis. Comput..

[7]  O. Faugeras,et al.  On determining the fundamental matrix : analysis of different methods and experimental results , 1993 .

[8]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Olivier D. Faugeras,et al.  Characterizing the Uncertainty of the Fundamental Matrix , 1997, Comput. Vis. Image Underst..

[10]  Ioannis K. Brilakis,et al.  Automated sparse 3D point cloud generation of infrastructure using its distinctive visual features , 2011, Adv. Eng. Informatics.

[11]  Uwe Hampel,et al.  Photogrammetric techniques in civil engineering material testing and structure monitoring , 2006 .

[12]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[14]  J. Eng,et al.  Sample Size Estimation : How Many Individuals Should Be Studied ? , 2022 .

[15]  Wojciech Chojnacki,et al.  A new approach to constrained parameter estimation applicable to some computer vision problems , 2002 .

[16]  Quang-Tuan Luong,et al.  Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices , 1997, International Journal of Computer Vision.

[17]  Patricio A. Vela,et al.  Personnel tracking on construction sites using video cameras , 2009, Adv. Eng. Informatics.

[18]  Roger Mohr,et al.  Epipole and fundamental matrix estimation using virtual parallax , 1995, Proceedings of IEEE International Conference on Computer Vision.

[19]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[20]  Silvio Savarese,et al.  Application of D4AR - A 4-Dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication , 2009, J. Inf. Technol. Constr..

[21]  Richard Szeliski,et al.  Reconstructing Rome , 2010, Computer.

[22]  Philip H. S. Torr,et al.  Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting , 2002, International Journal of Computer Vision.

[23]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[24]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[25]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[26]  Roger MohrLifia Epipole and Fundamental Matrix Estimation Using the Virtual Parallax Property , 1995 .

[27]  Kenichi Kanatani,et al.  Small Algorithm for Fundamental Matrix Computation , 2008 .

[28]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Shang-Hong Lai,et al.  Robust Fundamental Matrix Estimation with Accurate Outlier Detection , 2007, J. Inf. Sci. Eng..

[30]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[31]  Niko Sünderhauf,et al.  COMPARING SEVERAL IMPLEMENTATIONS OF TWO RECENTLY PUBLISHED FEATURE DETECTORS , 2007 .