Reflection of near-infrared light confers thermal protection in birds

[1]  Jair E. Garcia,et al.  Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies , 2019, Proceedings of the Royal Society B.

[2]  E. Font,et al.  Body coloration and mechanisms of colour production in Archelosauria: the case of deirocheline turtles , 2019, bioRxiv.

[3]  M. Kearney,et al.  Reflection of near-infrared light confers thermal protection in birds , 2018, Nature Communications.

[4]  R. Mulder,et al.  The microstructure of white feathers predicts their visible and near-infrared reflectance properties , 2018, PloS one.

[5]  Ashish Sharma,et al.  Future aridity under conditions of global climate change , 2017 .

[6]  B. O. Wolf,et al.  Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds , 2017, Journal of Experimental Biology.

[7]  L. D’Alba,et al.  Interactions between colour-producing mechanisms and their effects on the integumentary colour palette , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Todd J. McWhorter,et al.  Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance , 2017, Journal of Experimental Biology.

[9]  R. Nudds,et al.  A phylogenetic comparative analysis reveals correlations between body feather structure and habitat , 2017 .

[10]  M. Kearney,et al.  NicheMapR – an R package for biophysical modelling: the microclimate model , 2017 .

[11]  B. O. Wolf,et al.  Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration , 2017, Proceedings of the National Academy of Sciences.

[12]  M. Kearney,et al.  An estimate of the water budget for the endangered night parrot of Australia under recent and future climates , 2016, Climate Change Responses.

[13]  Matthew D. Arnold,et al.  Nanophotonics-enabled smart windows, buildings and wearables , 2016 .

[14]  Di Zhang,et al.  Optical Functional Materials Inspired by Biology , 2016 .

[15]  Mike Grundy,et al.  Soil and landscape grid of Australia. , 2015 .

[16]  Patrick-Jean Guay,et al.  Biological, ecological, conservation and legal information for all species and subspecies of Australian bird , 2015, Scientific Data.

[17]  B. O. Wolf,et al.  Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines , 2015, The Journal of Experimental Biology.

[18]  Ary A. Hoffmann,et al.  Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental‐scale soil and weather data , 2014 .

[19]  D. Coumou,et al.  Historic and future increase in the global land area affected by monthly heat extremes , 2013 .

[20]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[21]  W. Edwards,et al.  The limit to the distribution of a rainforest marsupial folivore is consistent with the thermal intolerance hypothesis , 2012, Oecologia.

[22]  K. Yau,et al.  Activation of Visual Pigments by Light and Heat , 2011, Science.

[23]  R. Goris Infrared Organs of Snakes: An Integral Part of Vision , 2011 .

[24]  W. Porter,et al.  Energetic modelling: a comparison of the different approaches used in seabirds. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[25]  W. Paterson,et al.  Estimating metabolic heat loss in birds and mammals by combining infrared thermography with biophysical modelling. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[26]  L. Schwarzkopf,et al.  Extending the Cost-Benefit Model of Thermoregulation: High-Temperature Environments , 2011, The American Naturalist.

[27]  M. Clayton,et al.  Combined effects of heat waves and droughts on avian communities across the conterminous United States , 2010 .

[28]  Jonathan S. Weissman,et al.  Molecular Basis of Infrared Detection by Snakes , 2010, Nature.

[29]  Matthew S. Schuler,et al.  The evolution of thermal physiology in endotherms. , 2002, Frontiers in bioscience.

[30]  Blair O. Wolf,et al.  Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves , 2010, Biology Letters.

[31]  D. Jones,et al.  High-quality spatial climate data-sets for Australia , 2009 .

[32]  M. Kearney,et al.  Size, shape, and the thermal niche of endotherms , 2009, Proceedings of the National Academy of Sciences.

[33]  G. Ruxton,et al.  Thermal consequences of turning white in winter: a comparative study of red grouse Lagopus lagopus scoticus and Scandinavian willow grouse L. l. lagopus , 2007 .

[34]  Marc J. Mazerolle,et al.  Improving data analysis in herpetology: Using Akaike's information criterion (AIC) to assess the strength of biological hypotheses , 2006 .

[35]  B. O. Wolf,et al.  The Allometry of Avian Basal Metabolic Rate: Good Predictions Need Good Data , 2004, Physiological and Biochemical Zoology.

[36]  G. Ruxton,et al.  The adaptive significance of dark plumage for birds in desert environments , 2002 .

[37]  B. O. Wolf,et al.  The Role of the Plumage in Heat Transfer Processes of Birds1 , 2000 .

[38]  W. E. Stewart,et al.  Calculating Climate Effects on Birds and Mammals: Impacts on Biodiversity, Conservation, Population Parameters, and Global Community Structure1 , 2000 .

[39]  Manfred Mürtz,et al.  Infrared detection in a beetle , 1997, Nature.

[40]  G. Walsberg,et al.  Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird , 1996, The Journal of experimental biology.

[41]  T. Dawson,et al.  THE HEAT LOAD FROM SOLAR RADIATION ON A LARGE, DIURNALLY ACTIVE BIRD, THE EMU (DROMAIUS NOVAEHOLLANDIAE) , 1995 .

[42]  W. E. Stewart,et al.  Endotherm Energetics: from a Scalable Individual-based Model to Ecological Applications , 1994 .

[43]  G. Sutter,et al.  Thermoregulatory performance of fledgling American coots (Fulica americana) in air and water , 1989 .

[44]  V. Vanderbilt,et al.  Avian Eggs: Thermoregulatory Value of Very High Near-Infrared Reflectance , 1978, Science.

[45]  D. M. Gates,et al.  THERMODYNAMIC EQUILIBRIA OF ANIMALS WITH ENVIRONMENT , 1969 .