Real time 3D localization and mapping for USAR robotic application

Purpose – The purpose of this paper is to demonstrate a real time 3D localization and mapping approach for the USAR (Urban Search and Rescue) robotic application, focusing on the performance and the accuracy of the General‐purpose computing on graphics processing units (GPGPU)‐based iterative closest point (ICP) 3D data registration implemented using modern GPGPU with FERMI architecture.Design/methodology/approach – The authors put all the ICP computation into GPU, and performed the experiments with registration up to 106 data points. The main goal of the research was to provide a method for real‐time data registration performed by a mobile robot equipped with commercially available laser measurement system 3D. The main contribution of the paper is a new GPGPU based ICP implementation with regular grid decomposition. It guarantees high accuracy as equivalent CPU based ICP implementation with better performance.Findings – The authors have shown an empirical analysis of the tuning of GPUICP parameters for o...

[1]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[2]  Ian D. Reid,et al.  On combining visual SLAM and visual odometry , 2010, 2010 IEEE International Conference on Robotics and Automation.

[3]  Jaime Valls Miró,et al.  BS-SLAM: Shaping the World , 2007, Robotics: Science and Systems.

[4]  H. Kage,et al.  High speed 3-D registration using GPU , 2008, 2008 SICE Annual Conference.

[5]  Rüdiger Dillmann,et al.  A region-based SLAM algorithm capturing metric, topological, and semantic properties , 2008, 2008 IEEE International Conference on Robotics and Automation.

[6]  Janusz Bedkowski,et al.  GPGPU implementation of On-Line point to plane 3D data registration , 2011, Proceedings of the 2011 International Conference on Electrical Engineering and Informatics.

[7]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[8]  D. Hähnel,et al.  Probabilistic Matching for 3D Scan Registration , 2002 .

[9]  Andreas Nüchter,et al.  GPU-Accelerated Nearest Neighbor Search for 3D Registration , 2009, ICVS.

[10]  Krzysztof Boryczko,et al.  GPU Bucket Sort Algorithm with Applications to Nearest-neighbour Search , 2008, J. WSCG.

[11]  Seyedshams Feyzabadi,et al.  SLAM à la carte - GPGPU for Globally Consistent Scan Matching , 2011, ECMR.

[12]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[13]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Dietrich Paulus,et al.  Real-time 3D mapping of rough terrain: A field report from Disaster City , 2010, 2010 IEEE Safety Security and Rescue Robotics.

[15]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[16]  Soon-Yong Park,et al.  An accurate and fast point-to-plane registration technique , 2003, Pattern Recognit. Lett..

[17]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[18]  Achim J. Lilienthal,et al.  Vision Aided 3D Laser Based Registration , 2007, EMCR.

[19]  Janusz Bedkowski Data Registration Module A Component of Semantic Simulation Engine , 2011, ECMR.

[20]  Andreas Nüchter,et al.  Parallelization of Scan Matching for Robotic 3D Mapping , 2007, EMCR.

[21]  David W. Murray,et al.  Combining monoSLAM with object recognition for scene augmentation using a wearable camera , 2010, Image Vis. Comput..

[22]  Achim J. Lilienthal,et al.  Vision aided 3D laser scanner based registration , 2007 .

[23]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Andreas Nüchter,et al.  Automatic appearance‐based loop detection from three‐dimensional laser data using the normal distributions transform , 2009, J. Field Robotics.

[25]  Andreas Nüchter,et al.  Automatic appearance-based loop detection from three-dimensional laser data using the normal distributions transform , 2009 .

[26]  Sunil Arya,et al.  Algorithms for fast vector quantization , 1993, [Proceedings] DCC `93: Data Compression Conference.

[27]  Henrik Andreasson,et al.  Local visual feature based localisation and mapping by mobile robots , 2008 .

[28]  Peter Schneider,et al.  Study of parameterizations for the rigid body transformations of the scan registration problem , 2010, Comput. Vis. Image Underst..

[29]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Joachim Hertzberg,et al.  Cached k-d tree search for ICP algorithms , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[31]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[32]  Soon-Yong Park,et al.  Real-time 3D registration using GPU , 2011, Machine Vision and Applications.