A review of demodulation techniques for amplitude-modulation atomic force microscopy

In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode.

[1]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[2]  Murti V. Salapaka,et al.  Harnessing the transient signals in atomic force microscopy , 2005 .

[3]  P. Heszler,et al.  Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope , 2006, Nanotechnology.

[4]  Hyongsok T. Soh,et al.  Fabrication of 0.1 um metal oxide semiconductor field-effect transistors with the atomic force microscope , 1995 .

[5]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[6]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[7]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[8]  Daniel Y. Abramovitch,et al.  Low latency demodulation for Atomic Force Microscopes, Part I efficient real-time integration , 2011, Proceedings of the 2011 American Control Conference.

[9]  S. O. Reza Moheimani,et al.  A Kalman Filter for Amplitude Estimation in High-Speed Dynamic Mode Atomic Force Microscopy , 2016, IEEE Transactions on Control Systems Technology.

[10]  Jan Tommy Gravdahl,et al.  Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy , 2018, IEEE Transactions on Control Systems Technology.

[11]  Sangmin An,et al.  Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air , 2014, Beilstein journal of nanotechnology.

[12]  Adly A. Girgis,et al.  Optimal Estimation of Voltage Phasors and Frequency Deviation Using Linear and Nonlinear Kalman Filtering: Theory and Limitations , 1984, IEEE Power Engineering Review.

[13]  Takeshi Fukuma,et al.  Phase modulation atomic force microscope with true atomic resolution , 2006 .

[14]  Murti V. Salapaka,et al.  Transient-signal-based sample-detection in atomic force microscopy , 2003 .

[15]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[16]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[17]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Larry K. Baxter,et al.  Capacitive Sensors: Design and Applications , 1996 .

[19]  Eric Monmasson,et al.  FPGA Design Methodology for Industrial Control Systems—A Review , 2007, IEEE Transactions on Industrial Electronics.

[20]  Andrew J. Dick,et al.  Utilizing Off-Resonance and Dual-Frequency Excitation to Distinguish Attractive and Repulsive Surface Forces in Atomic Force Microscopy , 2011 .

[21]  Charles Kitchin and Lew Counts RMS to DC conversion application guide , 2016 .

[22]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[23]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[24]  S. O. Reza Moheimani,et al.  State estimation for high-speed multifrequency atomic force microscopy , 2016, 2016 American Control Conference (ACC).

[25]  Michael G. Ruppert,et al.  High-Bandwidth Demodulation in MF-AFM: A Kalman Filtering Approach , 2016, IEEE/ASME Transactions on Mechatronics.

[26]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[27]  S. O. R. Moheimani,et al.  Direct Tip-Sample Force Estimation for High-Speed Dynamic Mode Atomic Force Microscopy , 2014, IEEE Transactions on Nanotechnology.

[28]  Andrew J. Fleming,et al.  Higher-harmonic AFM imaging with a high-bandwidth multifrequency Lyapunov filter , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[29]  Robert W. Stark,et al.  Higher harmonics imaging in tapping-mode atomic-force microscopy , 2003 .

[30]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[31]  Walter C. Michels,et al.  A Pentode Lock‐In Amplifier of High Frequency Selectivity , 1941 .

[32]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[33]  C R Cosens,et al.  A balance-detector for alternating-current bridges , 1934 .

[34]  Jan Tommy Gravdahl,et al.  On Amplitude Estimation for High-Speed Atomic Force Microscopy , 2016, 2016 American Control Conference (ACC).

[35]  S O R Moheimani,et al.  A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. , 2014, The Review of scientific instruments.

[36]  Harold S. Johnston,et al.  Digital Phase Sensitive Detector , 1968 .

[37]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[38]  D.R. Sahoo,et al.  Transient Force Atomic Force Microscopy: A New Nano-Interrogation Method , 2007, 2007 American Control Conference.

[39]  Robert Forchheimer,et al.  Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy , 2015, Nature Communications.

[40]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[41]  Graham C. Goodwin,et al.  Design of modulated and demodulated controllers for flexible structures , 2007 .

[42]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[43]  David S. Nyce,et al.  Linear position sensors : theory and application , 2004 .

[44]  E. Nauman,et al.  Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. , 2011, Nature nanotechnology.

[45]  Hiroyuki Noji,et al.  High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.

[46]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[47]  Andrew J. Fleming,et al.  Design, Modeling and Control of Nanopositioning Systems , 2014 .

[48]  Behzad Razavi Architectures and circuits for RF CMOS receivers , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[49]  Andrew J. Fleming,et al.  A review of nanometer resolution position sensors: Operation and performance , 2013 .

[50]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[51]  S. O. R. Moheimani,et al.  Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .

[52]  S. O. Reza Moheimani,et al.  Multimode $Q$ Control in Tapping-Mode AFM: Enabling Imaging on Higher Flexural Eigenmodes , 2016, IEEE Transactions on Control Systems Technology.

[53]  Toshio Ando,et al.  Fast phase imaging in liquids using a rapid scan atomic force microscope , 2006 .

[54]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[55]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[56]  Georg E. Fantner,et al.  Kinetics of Antimicrobial Peptide Activity Measured on Individual Bacterial Cells Using High Speed AFM , 2010, Nature nanotechnology.

[57]  Daniel Y. Abramovitch Low Latency Demodulation for Atomic Force Microscopes, Part II: Efficient Calculation of Magnitude and Phase , 2011 .

[58]  Murti V. Salapaka,et al.  An observer based sample detection scheme for atomic force microscopy , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[59]  Henning Stahlberg,et al.  Characterization of the motion of membrane proteins using high-speed atomic force microscopy. , 2012, Nature nanotechnology.

[60]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[61]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[62]  W. Szmaja,et al.  Application of the method of synchronous detection for higher-harmonics imaging in tapping-mode atomic force microscopy , 2015 .

[63]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[64]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[65]  Ricardo Garcia,et al.  Fast nanomechanical spectroscopy of soft matter , 2014, Nature Communications.