Self-adaptive Synchronous Localization and Mapping using Runtime Feature Models

Mobile autonomous robotic systems need to operate in unknown areas. For this, a plethora of simultaneous localization and mapping (SLAM) approaches has been proposed over the last decades. Although many of these existing approaches have been successfully applied even in real-world productive scenarios, they are typically designed for specific contexts (e.g., invs. outdoor, crowded vs. free areas, etc.). Thus, for different contexts, different SLAM algorithms should be used. In this paper, we propose a feature-based classification of SLAM algorithms and a reconfiguration approach to switch between existing SLAM implementations at runtime. By this, mobile robots are enabled to always use the most efficient implementation for their current contexts.

[1]  Bruno Steux,et al.  tinySLAM: A SLAM algorithm in less than 200 lines C-language program , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[2]  Oskar von Stryk,et al.  Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots , 2013, RoboCup.

[3]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[4]  Javier Civera,et al.  EKF monocular SLAM with relocalization for laparoscopic sequences , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  N. Achour,et al.  ICP-SLAM methods implementation on a bi-steerable mobile robot , 2013, 2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics.

[6]  Gamini Dissanayake,et al.  D-SLAM: Decoupled Localization and Mapping for Autonomous Robots , 2005, ISRR.

[7]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[8]  Nicolas Mansard,et al.  RT-SLAM: A Generic and Real-Time Visual SLAM Implementation , 2011, ICVS.

[9]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[10]  Jens-Steffen Gutmann,et al.  Vector Field SLAM—Localization by Learning the Spatial Variation of Continuous Signals , 2012, IEEE Transactions on Robotics.

[11]  Hongjian Wang,et al.  Research on compressed EKF based SLAM algorithm for unmanned underwater vehicle , 2012, ITSC.

[12]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[13]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[15]  Frank Dellaert,et al.  Covariance recovery from a square root information matrix for data association , 2009, Robotics Auton. Syst..

[16]  Frank Dellaert,et al.  Fast Incremental Square Root Information Smoothing , 2007, IJCAI.

[17]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Gamini Dissanayake,et al.  Linear SLAM: A linear solution to the feature-based and pose graph SLAM based on submap joining , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Stephan Weißleder,et al.  Zwei Ansätze zur automatischen modellbasierten Generierung von Testfällen für variantenreiche Systeme , 2013, Softwaretechnik-Trends.

[20]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Cyrill Stachniss,et al.  Hierarchical optimization on manifolds for online 2D and 3D mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[22]  Javier González,et al.  Efficient probabilistic Range-Only SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Andreas Nüchter,et al.  3D Robotic Mapping - The Simultaneous Localization and Mapping Problem with Six Degrees of Freedom , 2009, Springer Tracts in Advanced Robotics.

[24]  Horst-Michael Groß,et al.  A sensor-independent approach to RBPF SLAM - Map Match SLAM applied to visual mapping , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Matthew R. Walter,et al.  Exactly Sparse Extended Information Filters for Feature-based SLAM , 2007, Int. J. Robotics Res..

[26]  Janet Wiles,et al.  OpenRatSLAM: an open source brain-based SLAM system , 2013, Autonomous Robots.

[27]  Wolfram Burgard,et al.  Methoden Online-6 DSLAM für RGB-D-Sensoren 6 D Visual SLAM for RGB-D Sensors , 2012 .

[28]  Christian Wende,et al.  FeatureMapper: mapping features to models , 2008, ICSE Companion '08.

[29]  Wolfram Burgard,et al.  Efficient Sparse Pose Adjustment for 2D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Frank Dellaert,et al.  Loopy SAM , 2007, IJCAI.

[31]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering , 2011, 2011 IEEE International Conference on Robotics and Automation.

[32]  Patrick Robertson,et al.  WiSLAM: Improving FootSLAM with WiFi , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[33]  Roland Chapuis,et al.  Trajectory-oriented EKF-SLAM using the Fourier-Mellin Transform applied to Microwave Radar Images , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Karl Tuyls,et al.  OctoSLAM: A 3D mapping approach to situational awareness of unmanned aerial vehicles , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[35]  Gordon Wyeth,et al.  SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights , 2012, 2012 IEEE International Conference on Robotics and Automation.

[36]  Gamini Dissanayake,et al.  Bearing-only SLAM in Indoor Environments Using a Modified Particle Filter , 2003 .