A CONNECTIONIST APPROACH FOR VISUAL PERCEPTION OF MOTION

Modeling visual perception of motion by connectionist networks offers various areas of research for the development of real-time models of dynamic perception-action. In this paper we present the bases of a bio-inspired connectionist approach that is part of our development of neural networks applied to autonomous robotics. Our model of visual perception of motion is based on a causal adaptation of spatiotemporal Gabor lters. We use our causal spatiotemporal lters within a modular and strongly localized architecture that performs a shunting inhibition mechanism. This model has been evaluated on articial as well as natural image sequences.

[1]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[2]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[3]  A. Derrington,et al.  Detecting and discriminating the direction of motion of luminance and colour gratings , 1993, Vision Research.

[4]  Tiangang Zhou,et al.  Spatiotemporal activation of the two visual pathways in form discrimination and spatial location: A brain mapping study , 2003, Human brain mapping.

[5]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[6]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[7]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[8]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[9]  Allen M. Waxman,et al.  Convected activation profiles and the measurement of visual motion , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Berthold K. P. Horn,et al.  "Determining optical flow": A Retrospective , 1993, Artif. Intell..

[11]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[12]  Senén Barro,et al.  Local Accumulation of Persistent Activity at Synaptic Level: Application to Motion Analysis , 1995, IWANN.

[13]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[14]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  L. C. Katz,et al.  Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. , 2003, Journal of neurophysiology.

[16]  T. Sato,et al.  Motion-detection model with two stages: Spatiotemporal filtering and feature matching , 1992 .

[17]  Adrian Spinei Estimation du mouvement par triades de filtres de Gabor : application au mouvement de transparence , 1998 .

[18]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[20]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[21]  J. Davenport Editor , 1960 .

[22]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[23]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[24]  P. Lennie Receptive fields , 2003, Current Biology.

[25]  P. Hammond,et al.  Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion , 1980, Neuroscience Letters.

[26]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[27]  N. Grzywacz,et al.  Directional Selectivity , 2004 .

[28]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[29]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Nicolai Petkov,et al.  Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells , 1997, Biological Cybernetics.

[31]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[32]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[33]  Sorin Daniel Moga Apprendre par imitation : une nouvelle voie d'apprentissage pour les robots autonomes , 2000 .

[34]  Michael S. Landy,et al.  Theories for the Visual Perception of Local Velocity and Coherent Motion , 1991 .

[35]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[36]  Constance S. Royden,et al.  Motion perception , 1998 .

[37]  Antonio Fernández-Caballero,et al.  On motion detection through a multi-layer neural network architecture , 2003, Neural Networks.

[38]  Michael J. Black Robust incremental optical flow , 1992 .

[39]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.