Kernel methods in computer vision: object localization, clustering, and taxonomy discovery

In this thesis we address three fundamental problems in computer vision using kernel methods. We first address the problem of object localization, which we frame as the problem of predicting a bounding box around an object of interest. We develop a framework in Chapter II for applying a branch and bound optimization strategy to efficiently and optimally detect a bounding box that maximizes objective functions including kernelized functions and proximity to a prototype. We demonstrate that this optimization can achieve state of the art results when applied to a simple linear objective function trained by a support vector machine. In Chapter III, we then examine how to train a kernelized objective function that is optimized for the task of object localization. In particular, this is achieved by the use of structured output regression. In contrast to a support vector machine, structured output regression does not simply predict binary outputs but rather predicts an element in some output space. In the case of object localization the output space is the space of all possible bounding boxes within an image. Structured output regression learns a function that measures the compatibility of inputs and outputs, and the best output is predicted by maximizing the compatibility over the space of outputs. This maximization turns out to be exactly the same branch and bound optimization as developed in Chapter II. Furthermore, a variant of this branch and bound optimization is also utilized during training as part of a constraint generation step. We then turn our focus to the problem of clustering images in Chapter IV. We first report results from a large scale evaluation of clustering algorithms, for which we measure how well the partition predicted by the clustering algorithm matches a known semantically correct partition of the data. In this study, we see particularly strong results from spectral clustering algorithms, which use the eigenvectors of an appropriately normalized kernel matrix to cluster the data. Motivated by this success, we develop a generalization of spectral clustering to data that appear in more than one modality, the primary example being images with associated text. As spectral clustering algorithms can be interpreted as the application of kernel principal components analysis followed by a reclustering step, we use the generalization of regularized kernel canonical correlation analysis followed by a reclustering step. The resulting algorithm, correlational spectral clustering, partitions the data significantly better than spectral clustering, and allows for the projection of unseen data that is only present in one modality (e.g. an image with no text caption). Finally, in Chapter V, we address the problem of discovering taxonomies in data. Given a sample of data, we wish to partition the data into clusters, and to find a taxonomy that relates the clusters. Our algorithm, numerical taxonomy clustering, works by maximizing a kernelized dependence measure between the data and an abstracted kernel matrix that is constructed from a partition matrix that defines the clusters and a positive definite matrix that represents the relationship between clusters. By appropriately constraining the latter matrix to be generated by an additive metric, we are able to interpret the result as a taxonomy. We make use of the well studied field of numerical taxonomy to efficiently optimize this constrained problem, and show that we not only achieve an interpretable result, but that the quality of clustering is improved for datasets that have a taxonomic structure.

[1]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[2]  Ilkka Autio Using natural class hierarchies in multi-class visual classification , 2006, Pattern Recognit..

[3]  W. T. Williams,et al.  Dissimilarity Analysis: a new Technique of Hierarchical Sub-division , 1964, Nature.

[4]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[5]  Eli Tzirkel-Hancock,et al.  Method and apparatus for pattern recognition , 1999 .

[6]  Larry S. Davis,et al.  Beyond Nouns: Exploiting Prepositions and Comparative Adjectives for Learning Visual Classifiers , 2008, ECCV.

[7]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[8]  René Baire,et al.  Lecons sur les fonctions discontinues , 1905 .

[9]  Tao Qin,et al.  Web image clustering by consistent utilization of visual features and surrounding texts , 2005, MULTIMEDIA '05.

[10]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Wray L. Buntine Variational Extensions to EM and Multinomial PCA , 2002, ECML.

[12]  Francesca Odone,et al.  Histogram intersection kernel for image classification , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[13]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[15]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[16]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Christoph H. Lampert,et al.  Efficient Subwindow Search: A Branch and Bound Framework for Object Localization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[21]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[22]  Michael I. Jordan,et al.  Learning Spectral Clustering, With Application To Speech Separation , 2006, J. Mach. Learn. Res..

[23]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Xiaojin Zhu,et al.  Kernel conditional random fields: representation and clique selection , 2004, ICML.

[25]  Arthur Gretton,et al.  Learning Taxonomies by Dependence Maximization , 2008, NIPS.

[26]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[27]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[29]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[32]  Bernard Gendron,et al.  Parallel Branch-and-Branch Algorithms: Survey and Synthesis , 1994, Oper. Res..

[33]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[34]  Matthias Hein,et al.  Manifold Denoising , 2006, NIPS.

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Ole Winther,et al.  Independent component analysis for understanding multimedia content , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[39]  Remco C. Veltkamp,et al.  Reliable and Efficient Pattern Matching Using an Affine Invariant Metric , 1999, International Journal of Computer Vision.

[40]  Ivan Laptev,et al.  Improvements of Object Detection Using Boosted Histograms , 2006, BMVC.

[41]  Jorma Laaksonen,et al.  Techniques for Still Image Scene Classification and Object Detection , 2006, ICANN.

[42]  Andrew Zisserman,et al.  An Exemplar Model for Learning Object Classes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[45]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[46]  Gökhan BakIr,et al.  Predicting Structured Data , 2008 .

[47]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[48]  Guillaume Bouchard,et al.  Hierarchical part-based visual object categorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[49]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[50]  Trevor Darrell,et al.  The Pyramid Match Kernel: Efficient Learning with Sets of Features , 2007, J. Mach. Learn. Res..

[51]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[52]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[53]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[54]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[55]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[56]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[57]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[58]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[59]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[60]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[61]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[63]  Mikhail Belkin,et al.  Maximum Margin Semi-Supervised Learning for Structured Variables , 2005, NIPS 2005.

[64]  Christopher J. C. Burges,et al.  Spectral clustering and transductive learning with multiple views , 2007, ICML '07.

[65]  Jing Hua,et al.  Clustering web images with multi-modal features , 2007, ACM Multimedia.

[66]  Pietro Perona,et al.  Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition , 2007, International Journal of Computer Vision.

[67]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[68]  Takeo Kanade,et al.  Human Face Detection in Visual Scenes , 1995, NIPS.

[69]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[70]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..

[71]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[72]  J Eichhorn,et al.  Object categorization with SVM: kernels for local features , 2004 .

[73]  Sebastian Nowozin,et al.  Infinite Kernel Learning , 2008, NIPS 2008.

[74]  Andrew McCallum,et al.  People-LDA: Anchoring Topics to People using Face Recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[75]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[76]  David M. Mount,et al.  Efficient algorithms for robust feature matching , 1999, Pattern Recognit..

[77]  Cordelia Schmid,et al.  Vector Quantizing Feature Space with a Regular Lattice , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[78]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[79]  Pietro Perona,et al.  Unsupervised learning of visual taxonomies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[81]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[82]  Christoph H. Lampert,et al.  Unsupervised Object Discovery: A Comparison , 2010, International Journal of Computer Vision.

[83]  W. A. Beyer,et al.  Additive evolutionary trees. , 1977, Journal of theoretical biology.

[84]  Gabriela Csurka,et al.  Adapted Vocabularies for Generic Visual Categorization , 2006, ECCV.

[85]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[86]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[87]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[88]  Tony Lindeberg,et al.  Shape-Adapted Smoothing in Estimation of 3-D Depth Cues from Affine Distortions of Local 2-D Brightness Structure , 1994, ECCV.

[89]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[90]  Tony Jebara,et al.  A Kernel Between Sets of Vectors , 2003, ICML.

[91]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[92]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[93]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[94]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[95]  Trevor Darrell,et al.  Learning Visual Representations using Images with Captions , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[96]  C. Baker Joint measures and cross-covariance operators , 1973 .

[97]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[98]  Francesca Odone,et al.  Image Kernels , 2002, SVM.

[99]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[100]  Derek R. Magee,et al.  Detecting lameness using 'Re-sampling Condensation' and 'multi-stream cyclic hidden Markov models' , 2002, Image Vis. Comput..

[101]  Pavel Vácha,et al.  Query by Pictorial Example , 2011 .

[102]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[103]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[104]  Yves Grandvalet,et al.  More efficiency in multiple kernel learning , 2007, ICML '07.

[105]  Daniel P. Huttenlocher,et al.  Composite Models of Objects and Scenes for Category Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[106]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[107]  Nicolas Le Roux,et al.  Learning Eigenfunctions Links Spectral Embedding and Kernel PCA , 2004, Neural Computation.

[108]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[109]  Thomas Gärtner,et al.  Multi-Instance Kernels , 2002, ICML.

[110]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[111]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[112]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[113]  C. Rosenberger,et al.  Comparative study of metrics for evaluation of object localisation by bounding boxes. , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[114]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[115]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[116]  Teodor Gabriel Crainic,et al.  PARALLEL BRANCH-AND-BOUND ALGORITHMS: SURVEY AND SYNTHESIS , 1993 .

[117]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[118]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[119]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[120]  Nir Ailon,et al.  Fitting tree metrics: Hierarchical clustering and phylogeny , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[121]  Thomas M. Breuel,et al.  Fast recognition using adaptive subdivisions of transformation space , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[122]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[123]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[124]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[125]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[126]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[127]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[128]  Wei-Ying Ma,et al.  Hierarchical clustering of WWW image search results using visual, textual and link information , 2004, MULTIMEDIA '04.

[129]  Lars Bretzner,et al.  Feature Tracking with Automatic Selection of Spatial Scales , 1998, Comput. Vis. Image Underst..

[130]  Matthew B. Blaschko,et al.  A Hilbert-Schmidt Dependence Maximization Approach to Unsupervised Structure Discovery , 2008, MLG 2008.

[131]  Koby Crammer,et al.  Advances in Neural Information Processing Systems 14 , 2002 .

[132]  Sven J. Dickinson,et al.  Learning Structured Appearance Models from Captioned Images of Cluttered Scenes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[133]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[134]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[135]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[136]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[137]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[138]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[139]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Clark F. Olson,et al.  Locating geometric primitives by pruning the parameter space , 2001, Pattern Recognit..

[141]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[142]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[143]  Jan Karel Lenstra,et al.  BRANCHING FROM THE LARGEST UPPER BOUND: FOLKLORE AND FACTS , 1978 .

[144]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[145]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[146]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[147]  Pietro Perona,et al.  Learning and using taxonomies for fast visual categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[148]  Le Song,et al.  A dependence maximization view of clustering , 2007, ICML '07.

[149]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[150]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[151]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[152]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[153]  Daphna Weinshall,et al.  Exploiting Object Hierarchy: Combining Models from Different Category Levels , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[154]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[155]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[156]  William T. Freeman,et al.  Orientation Histograms for Hand Gesture Recognition , 1995 .

[157]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[158]  Christoph H. Lampert,et al.  A Multiple Kernel Learning Approach to Joint Multi-class Object Detection , 2008, DAGM-Symposium.

[159]  Sampath Kannan,et al.  Approximating the Best-Fit Tree Under Lp Norms , 2005, APPROX-RANDOM.

[160]  Thomas M. Breuel On the use of interval arithmetic in geometric branch and bound algorithms , 2003, Pattern Recognit. Lett..

[161]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[162]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[163]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[164]  Frédéric Jurie,et al.  Latent mixture vocabularies for object categorization and segmentation , 2006, Image Vis. Comput..

[165]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[166]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[167]  Narendra Ahuja,et al.  Learning the Taxonomy and Models of Categories Present in Arbitrary Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[168]  David A. Forsyth,et al.  Discriminating Image Senses by Clustering with Multimodal Features , 2006, ACL.

[169]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[170]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[171]  Christoph H. Lampert,et al.  Correlational spectral clustering , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[172]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[173]  Christoph H. Lampert,et al.  Efficient Subwindow Search for Object Localization , 2007 .

[174]  Lior Wolf,et al.  Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..

[175]  John F. Canny,et al.  GaP: a factor model for discrete data , 2004, SIGIR '04.

[176]  Matthias Hein,et al.  Manifold Denoising as Preprocessing for Finding Natural Representations of Data , 2007, AAAI.

[177]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[178]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[179]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[180]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[181]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[182]  Yee Whye Teh,et al.  Names and faces in the news , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[183]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[184]  Daphne Koller,et al.  Learning Spatial Context: Using Stuff to Find Things , 2008, ECCV.

[185]  Nozha Boujemaa,et al.  Generalized histogram intersection kernel for image recognition , 2005, IEEE International Conference on Image Processing 2005.

[186]  J. Meyer Generalized Inversion of Modified Matrices , 1973 .

[187]  Julia Hirschberg,et al.  V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.

[188]  Ron Bekkerman,et al.  Multi-modal Clustering for Multimedia Collections , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[189]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[190]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[191]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[192]  Frédéric Jurie,et al.  Solution of the Simultaneous Pose and Correspondence Problem Using Gaussian Error Model , 1999, Comput. Vis. Image Underst..

[193]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[194]  M. Saquib Sarfraz,et al.  Head Pose Estimation in Face Recognition Across Pose Scenarios , 2008, VISAPP.

[195]  Cheng Soon Ong,et al.  Multiclass multiple kernel learning , 2007, ICML '07.

[196]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.