Undirected connectivity of sparse Yao graphs

Given a finite set <i>S</i> of points in the plane and a real value <i>d</i> > 0, the <i>d</i>--radius disk graph <i>G</i><sup><i>d</i></sup> contains all edges connecting pairs of points in <i>S</i> that are within distance <i>d</i> of each other. For a given graph <i>G</i> with vertex set <i>S</i>, the Yao subgraph <i>Y</i><sub><i>k</i></sub>[<i>G</i>] with integer parameter <i>k</i> > 0 contains, for each point <i>p</i> ∈ <i>S</i>, a shortest edge <i>pq</i> ∈ <i>G</i> (if any) in each of the <i>k</i> sectors defined by <i>k</i> equally-spaced rays with origin <i>p.</i> Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of <i>Y</i><sub><i>k</i></sub>[<i>G</i><sup><i>d</i></sup>], for small values of <i>k</i> and <i>d.</i> In particular, we derive lower and upper bounds on the minimum radius <i>d</i> that renders <i>Y</i><sub><i>k</i></sub>[<i>G</i><sup><i>d</i></sup>] connected, relative to the unit radius assumed to render <i>G</i><sup><i>d</i></sup> connected. We show that <i>d</i> = [EQUATION] is necessary and sufficient for the connectivity of <i>Y</i><sub>4</sub>[<i>G</i><sup><i>d</i></sup>]. We also show that, for <i>d</i> ≤ 5 − 2/3 [EQUATION], the graph <i>Y</i><sub>3</sub>[<i>G</i><sup><i>d</i></sup>] can be disconnected, but <i>Y</i><sub>3</sub>[<i>G</i><sup>2/[EQUATION]</sup>] is always connected. Finally, we show that <i>Y</i><sub>2</sub>[<i>G</i><sup><i>d</i></sup>] can be disconnected, for any <i>d</i> ≥ 1.

[1]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[2]  Panganamala Ramana Kumar,et al.  The Number of Neighbors Needed for Connectivity of Wireless Networks , 2004, Wirel. Networks.

[3]  Paramvir Bahl,et al.  A cone-based distributed topology-control algorithm for wireless multi-hop networks , 2005, IEEE/ACM Transactions on Networking.

[4]  Peng-Jun Wan,et al.  Asymptotic critical transmission radius and critical neighbor number for k-connectivity in wireless ad hoc networks , 2004, MobiHoc '04.

[5]  Xiang-Yang Li,et al.  Power efficient and sparse spanner for wireless ad hoc networks , 2001, Proceedings Tenth International Conference on Computer Communications and Networks (Cat. No.01EX495).

[6]  Gaurav S. Sukhatme,et al.  Using Local Geometry for Tunable Topology Control in Sensor Networks , 2009, IEEE Transactions on Mobile Computing.

[7]  Mirela Damian,et al.  Yao Graphs Span Theta Graphs , 2012, Discret. Math. Algorithms Appl..

[8]  Xenofon D. Koutsoukos,et al.  A Survey on Localization for Mobile Wireless Sensor Networks , 2009, MELT.

[9]  Xiang-Yang Li,et al.  A unified energy-efficient topology for unicast and broadcast , 2005, MobiCom '05.

[10]  Xiang-Yang Li,et al.  Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks , 2004, MobiHoc '04.

[11]  Ovidiu Daescu,et al.  Combinatorial optimization and applications : 4th International Conference, COCOA 2010, Kailua-Kona, HI, USA, December 18-20, 2010 : proceedings , 2010 .

[12]  Chien-Chung Shen,et al.  Multibeam antenna-based topology control with directional power intensity for ad hoc networks , 2006, IEEE Transactions on Mobile Computing.

[13]  G. Galvin,et al.  Global connectivity from local geometric constraints for sensor networks with various wireless footprints , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[14]  Honghai Zhang,et al.  Asymptotic Critical Total Power for $k$ -Connectivity of Wireless Networks , 2008, IEEE/ACM Transactions on Networking.

[15]  El Molla,et al.  Yao spanners for wireless ad hoc networks , 2009 .

[16]  Xiang-Yang Li,et al.  Sparse power efficient topology for wireless networks , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[17]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[18]  Giri Narasimhan,et al.  Approximating Geometric Bottleneck Shortest Paths , 2003, STACS.

[19]  Michiel H. M. Smid,et al.  π/2-Angle Yao Graphs are Spanners , 2012, Int. J. Comput. Geom. Appl..