Deep learning in multi-object detection and tracking: state of the art

[1]  Clayton D. Scott,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Sankar K. Pal,et al.  Granulated RCNN and Multi-Class Deep SORT for Multi-Object Detection and Tracking , 2022, IEEE Transactions on Emerging Topics in Computational Intelligence.

[3]  Sankar K. Pal,et al.  Granular Video Computing - with Rough Sets, Deep Learning and in IoT , 2021, Granular Video Computing.

[4]  Mubarak Shah,et al.  Deep Affinity Network for Multiple Object Tracking , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Shuicheng Yan,et al.  Joint Rain Detection and Removal from a Single Image with Contextualized Deep Networks , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jordi Pont-Tuset,et al.  The Open Images Dataset V4 , 2018, International Journal of Computer Vision.

[7]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Zhigang Zeng,et al.  CLU-CNNs: Object detection for medical images , 2019, Neurocomputing.

[9]  Shuyuan Yang,et al.  A Survey of Deep Learning-Based Object Detection , 2019, IEEE Access.

[10]  Wenguan Wang,et al.  Shifting More Attention to Video Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Shenhua Hou,et al.  L3-Net: Towards Learning Based LiDAR Localization for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ling Shao,et al.  Multiobject Tracking by Submodular Optimization , 2019, IEEE Transactions on Cybernetics.

[13]  Sankar K. Pal,et al.  Granulated deep learning and Z-numbers in motion detection and object recognition , 2019, Neural Computing and Applications.

[14]  Shengyong Chen,et al.  Deep learning for multiple object tracking: a survey , 2019, IET Comput. Vis..

[15]  Quoc V. Le,et al.  NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Naeem Khalid Janjua,et al.  Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions , 2019, IEEE Access.

[17]  Omar Y. Al-Jarrah,et al.  A Survey on 3D Object Detection Methods for Autonomous Driving Applications , 2019, IEEE Transactions on Intelligent Transportation Systems.

[18]  Stephen Lin,et al.  Deformable ConvNets V2: More Deformable, Better Results , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Ying Chen,et al.  M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network , 2018, AAAI.

[20]  Xindong Wu,et al.  Object Detection With Deep Learning: A Review , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[21]  Tieniu Tan,et al.  Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jinhui Tang,et al.  Richer Convolutional Features for Edge Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Muhammad Sarfraz,et al.  An Approach to License Plate Recognition System Using Neural Network , 2019, Exploring Critical Approaches of Evolutionary Computation.

[24]  H. Jalab,et al.  A survey on skin detection in colored images , 2019, Artificial Intelligence Review.

[25]  Tal Hassner,et al.  Deep Face Recognition: A Survey , 2018, 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

[26]  Shuang Bai,et al.  A survey on automatic image caption generation , 2018, Neurocomputing.

[27]  James M. Rehg,et al.  Multi-object Tracking with Neural Gating Using Bilinear LSTM , 2018, ECCV.

[28]  Mehmet A. Orgun,et al.  A survey on real-time event detection from the Twitter data stream , 2018, J. Inf. Sci..

[29]  Sankar K. Pal,et al.  Neighborhood Rough Filter and Intuitionistic Entropy in Unsupervised Tracking , 2018, IEEE Transactions on Fuzzy Systems.

[30]  Palaiahnakote Shivakumara,et al.  CNN-RNN based method for license plate recognition , 2018, CAAI Trans. Intell. Technol..

[31]  Gianpaolo Francesco Trotta,et al.  Computer vision and deep learning techniques for pedestrian detection and tracking: A survey , 2018, Neurocomputing.

[32]  Koyel Banerjee,et al.  Online Camera LiDAR Fusion and Object Detection on Hybrid Data for Autonomous Driving , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[33]  Xiangyu Zhang,et al.  DetNet: A Backbone network for Object Detection , 2018, ArXiv.

[34]  Fan Yang,et al.  Trajectory Factory: Tracklet Cleaving and Re-Connection by Deep Siamese Bi-GRU for Multiple Object Tracking , 2018, 2018 IEEE International Conference on Multimedia and Expo (ICME).

[35]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[36]  Huchuan Lu,et al.  Deep visual tracking: Review and experimental comparison , 2018, Pattern Recognit..

[37]  Yiannis Demiris,et al.  Context-Aware Deep Feature Compression for High-Speed Visual Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[38]  Sridha Sridharan,et al.  Task Specific Visual Saliency Prediction with Memory Augmented Conditional Generative Adversarial Networks , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[39]  Sridha Sridharan,et al.  Tracking by Prediction: A Deep Generative Model for Mutli-person Localisation and Tracking , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[40]  Seung-Hwan Bae,et al.  Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jianhua Hou,et al.  Multiple Target Tracking by Learning Feature Representation and Distance Metric Jointly , 2018, ArXiv.

[42]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Shifeng Zhang,et al.  Single-Shot Refinement Neural Network for Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Silvio Savarese,et al.  Recurrent Autoregressive Networks for Online Multi-object Tracking , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[45]  Lei Zhang,et al.  Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Steven C. H. Hoi,et al.  Face Detection using Deep Learning: An Improved Faster RCNN Approach , 2017, Neurocomputing.

[47]  Deepu Rajan,et al.  Backtracking Spatial Pyramid Pooling-Based Image Classifier for Weakly Supervised Top–Down Salient Object Detection , 2016, IEEE Transactions on Image Processing.

[48]  Huimin Ma,et al.  Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection , 2016, IEEE Transactions on Image Processing.

[49]  Qi Tian,et al.  Pooling the Convolutional Layers in Deep ConvNets for Video Action Recognition , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[50]  Suresh Nair Athul,et al.  A SURVEY OF TECHNIQUES FOR LICENSE PLATE DETECTION AND RECOGNITION , 2018 .

[51]  Anima Majumder,et al.  Automatic Facial Expression Recognition System Using Deep Network-Based Data Fusion , 2018, IEEE Transactions on Cybernetics.

[52]  Sankar Kumar Pal,et al.  Granular Flow Graph, Adaptive Rule Generation and Tracking , 2017, IEEE Transactions on Cybernetics.

[53]  Edward J. Delp,et al.  A Two Stream Siamese Convolutional Neural Network for Person Re-identification , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[54]  Yanbing Xue,et al.  Semantic image segmentation with fused CNN features , 2017 .

[55]  Zenghui Wang,et al.  Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review , 2017, Neural Computation.

[56]  Long Chen,et al.  Online multi-object tracking with convolutional neural networks , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[57]  Nenghai Yu,et al.  Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[58]  Hanqing Lu,et al.  CoupleNet: Coupling Global Structure with Local Parts for Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  Hervé Glotin,et al.  Pedestrian Detection Based on Fast R-CNN and Batch Normalization , 2017, ICIC.

[60]  Volker Eiselein,et al.  High-Speed tracking-by-detection without using image information , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[61]  Bernt Schiele,et al.  Multiple People Tracking by Lifted Multicut and Person Re-identification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Bohyung Han,et al.  Multi-object Tracking with Quadruplet Convolutional Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Nanning Zheng,et al.  Point to Set Similarity Based Deep Feature Learning for Person Re-Identification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Wongun Choi,et al.  Deep Network Flow for Multi-object Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Shengyong Chen,et al.  Object tracking using a convolutional network and a structured output SVM , 2017, Computational Visual Media.

[66]  Hao Wang,et al.  Face R-CNN , 2017, ArXiv.

[67]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[69]  Larry S. Davis,et al.  Soft-NMS — Improving Object Detection with One Line of Code , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[70]  Daniel Cremers,et al.  Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking , 2017, ArXiv.

[71]  Dietrich Paulus,et al.  Simple online and realtime tracking with a deep association metric , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[72]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[73]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[74]  Kai Chen,et al.  A Convolutional Neural Network-Based Chinese Text Detection Algorithm via Text Structure Modeling , 2017, IEEE Transactions on Multimedia.

[75]  Wei Liu,et al.  DSSD : Deconvolutional Single Shot Detector , 2017, ArXiv.

[76]  Silvio Savarese,et al.  Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[77]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[78]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[79]  Xiao Zhang,et al.  Range Loss for Deep Face Recognition with Long-Tailed Training Data , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[80]  Yaser Sheikh,et al.  OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Huaizu Jiang,et al.  Face Detection with the Faster R-CNN , 2016, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[84]  Konrad Schindler,et al.  Online Multi-Target Tracking Using Recurrent Neural Networks , 2016, AAAI.

[85]  Shu Wang,et al.  Multispectral Deep Neural Networks for Pedestrian Detection , 2016, BMVC.

[86]  Qi Tian,et al.  MARS: A Video Benchmark for Large-Scale Person Re-Identification , 2016, ECCV.

[87]  Yohan Dupuis,et al.  A Survey of Vision-Based Traffic Monitoring of Road Intersections , 2016, IEEE Transactions on Intelligent Transportation Systems.

[88]  Ramakant Nevatia,et al.  A multi-scale cascade fully convolutional network face detector , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[89]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Youbao Tang,et al.  Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs , 2016, ECCV.

[91]  Bernt Schiele,et al.  Multi-person Tracking by Multicut and Deep Matching , 2016, ECCV Workshops.

[92]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[93]  Liang Lin,et al.  Is Faster R-CNN Doing Well for Pedestrian Detection? , 2016, ECCV.

[94]  Nanning Zheng,et al.  Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[95]  Shao-Yi Chien,et al.  Real-Time Salient Object Detection with a Minimum Spanning Tree , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Yizhou Wang,et al.  Face Detection with End-to-End Integration of a ConvNet and a 3D Model , 2016, ECCV.

[97]  Yi Li,et al.  R-FCN: Object Detection via Region-based Fully Convolutional Networks , 2016, NIPS.

[98]  Gang Wang,et al.  Joint Learning of Convolutional Neural Networks and Temporally Constrained Metrics for Tracklet Association , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[99]  Konrad Schindler,et al.  Learning by Tracking: Siamese CNN for Robust Target Association , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[100]  Junwei Han,et al.  A Survey on Object Detection in Optical Remote Sensing Images , 2016, ArXiv.

[101]  Stefan Roth,et al.  MOT16: A Benchmark for Multi-Object Tracking , 2016, ArXiv.

[102]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[103]  Fabio Tozeto Ramos,et al.  Simple online and realtime tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[104]  Kavita Bala,et al.  Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[105]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[106]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[107]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Stefano Tubaro,et al.  Deep Convolutional Neural Networks for pedestrian detection , 2015, Signal Process. Image Commun..

[109]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Xiaokang Yang,et al.  A Convolutional Neural Network-Based Chinese Text Detection Algorithm via Text Structure Modeling , 2017, IEEE transactions on multimedia.

[111]  Kuan Fang,et al.  Track-RNN : Joint Detection and Tracking Using Recurrent Neural Networks , 2016 .

[112]  Sankar K. Pal,et al.  Neighborhood granules and rough rule-base in tracking , 2016, Natural Computing.

[113]  James M. Rehg,et al.  Multiple Hypothesis Tracking Revisited , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[114]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[115]  Qi Zhao,et al.  SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[116]  Silvio Savarese,et al.  Learning to Track: Online Multi-object Tracking by Decision Making , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[117]  Sankar K. Pal,et al.  Z*-numbers: Augmented Z-numbers for machine-subjectivity representation , 2015, Inf. Sci..

[118]  Xiaogang Wang,et al.  Deep Learning Strong Parts for Pedestrian Detection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[119]  Rynson W. H. Lau,et al.  SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection , 2015, International Journal of Computer Vision.

[120]  Yi Yang,et al.  DenseBox: Unifying Landmark Localization with End to End Object Detection , 2015, ArXiv.

[121]  Nuno Vasconcelos,et al.  Learning Complexity-Aware Cascades for Deep Pedestrian Detection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[122]  Huchuan Lu,et al.  Deep networks for saliency detection via local estimation and global search , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[123]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[125]  Saining Xie,et al.  Holistically-Nested Edge Detection , 2015, International Journal of Computer Vision.

[126]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[127]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[128]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[131]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[132]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[134]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[135]  Pietro Perona,et al.  Fast Feature Pyramids for Object Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[136]  Junjie Yan,et al.  Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[137]  Michael Dorr,et al.  Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Xiaogang Wang,et al.  DeepReID: Deep Filter Pairing Neural Network for Person Re-identification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[139]  Kuk-Jin Yoon,et al.  Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[141]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[142]  Daan Wierstra,et al.  Deep AutoRegressive Networks , 2013, ICML.

[143]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[144]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[145]  Mario Sznaier,et al.  The Way They Move: Tracking Multiple Targets with Similar Appearance , 2013, 2013 IEEE International Conference on Computer Vision.

[146]  Sankar K. Pal,et al.  Granulation, rough entropy and spatiotemporal moving object detection , 2013, Appl. Soft Comput..

[147]  Xuelong Li,et al.  A Comprehensive Survey to Face Hallucination , 2013, International Journal of Computer Vision.

[148]  Soumitra Dutta,et al.  An Insight Into The Z-number Approach To CWW , 2013, Fundam. Informaticae.

[149]  Sam Friedman,et al.  Online Detection of Repeated Structures in Point Clouds of Urban Scenes for Compression and Registration , 2013, International Journal of Computer Vision.

[150]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[151]  Sankar K. Pal,et al.  Fuzzy rough granular self-organizing map and fuzzy rough entropy , 2012, Theor. Comput. Sci..

[152]  Nuno Vasconcelos,et al.  Learning Optimal Embedded Cascades , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[153]  Xuelong Li,et al.  Face Sketch–Photo Synthesis and Retrieval Using Sparse Representation , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[154]  Konrad Schindler,et al.  Discrete-continuous optimization for multi-target tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[155]  Ming-Hsuan Yang,et al.  Top-down visual saliency via joint CRF and dictionary learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[156]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[157]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Xuelong Li,et al.  Vehicle detection and tracking in airborne videos by multi-motion layer analysis , 2012, Machine Vision and Applications.

[159]  Lotfi A. Zadeh,et al.  A Note on Z-numbers , 2011, Inf. Sci..

[160]  Konrad Schindler,et al.  Multi-target tracking by continuous energy minimization , 2011, CVPR 2011.

[161]  Charless C. Fowlkes,et al.  Globally-optimal greedy algorithms for tracking a variable number of objects , 2011, CVPR 2011.

[162]  Nanning Zheng,et al.  Learning to Detect A Salient Object , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[163]  Jong-Hun Lee,et al.  Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter , 2010 .

[164]  Sankar K. Pal,et al.  Gradient histogram: Thresholding in a region of interest for edge detection , 2010, Image Vis. Comput..

[165]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[166]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[167]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[168]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[169]  Sankar K. Pal,et al.  Generalized Rough Sets, Entropy, and Image Ambiguity Measures , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[170]  Simon C. K. Shiu,et al.  Two-dimensional Laplacianfaces method for face recognition , 2008, Pattern Recognit..

[171]  Jenq-Neng Hwang,et al.  Multiple-Target Tracking for Crossroad Traffic Utilizing Modified Probabilistic Data Association , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[172]  Sankar K. Pal,et al.  Granular computing, rough entropy and object extraction , 2005, Pattern Recognit. Lett..

[173]  Sankar K. Pal,et al.  Multispectral image segmentation using the rough-set-initialized EM algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..

[174]  Guojie Li,et al.  From the Editor-in-Chief , 1995, Journal of Computer Science and Technology.

[175]  Sankar K. Pal,et al.  Fuzzy multi-layer perceptron, inferencing and rule generation , 1995, IEEE Trans. Neural Networks.

[176]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[177]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[178]  Sankar K. Pal,et al.  Linguistic recognition system based on approximate reasoning , 1992, Inf. Sci..

[179]  Sankar K. Pal,et al.  Grey level thresholding using second-order statistics , 1983, Pattern Recognit. Lett..

[180]  Sankar K. Pal,et al.  Automatic grey level thresholding through index of fuzziness and entropy , 1983, Pattern Recognit. Lett..

[181]  Sankar K. Pal,et al.  On Edge Detection of X-Ray Images Using Fuzzy Sets , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[182]  D. Reid An algorithm for tracking multiple targets , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.