Obstacle avoidance in V-shape formation flight of multiple fixed-wing UAVs using variable repulsive circles

[1]  Marc Schwarzbach,et al.  Cooperative sense and avoid: Implementation in simulation and real world for small unmanned aerial vehicles , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[2]  Scott A. Smolka,et al.  A survey on unmanned aerial vehicle collision avoidance systems , 2015, ArXiv.

[3]  B. M. Albaker,et al.  A survey of collision avoidance approaches for unmanned aerial vehicles , 2009, 2009 International Conference for Technical Postgraduates (TECHPOS).

[4]  Jianqiao Yu,et al.  Optimal formation control with limited communication for multi-unmanned aerial vehicle in an obstacle-laden environment , 2017 .

[5]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[6]  Dan Wang,et al.  Adaptive Dynamic Surface Control for Formations of Autonomous Surface Vehicles With Uncertain Dynamics , 2013, IEEE Transactions on Control Systems Technology.

[7]  Aria Alasty,et al.  Flocking coordination using active leader and local information , 2011 .

[8]  John David Anderson,et al.  Aircraft performance and design , 1998 .

[9]  Thang Nguyen,et al.  Distributed Formation Control for Autonomous Robots in Dynamic Environments , 2017, ArXiv.

[10]  Stjepan Bogdan,et al.  Multi-Agent Formation Control Based on Bell-Shaped Potential Functions , 2010, J. Intell. Robotic Syst..

[11]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[12]  Wen-Hua Chen,et al.  Optimization-Based Safety Analysis of Obstacle Avoidance Systems for Unmanned Aerial Vehicles , 2012, J. Intell. Robotic Syst..

[13]  K. D. Do,et al.  Nonlinear formation control of unicycle-type mobile robots , 2007, Robotics Auton. Syst..

[14]  Domenico Prattichizzo,et al.  Discussion of paper by , 2003 .

[15]  Rianto Adhy Sasongko,et al.  UAV Obstacle Avoidance Algorithm Based on Ellipsoid Geometry , 2017, J. Intell. Robotic Syst..

[16]  R. K. Barai,et al.  Leader-follower formation control using artificial potential functions: A kinematic approach , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[17]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[18]  Baris Fidan,et al.  Aggregation, Foraging, and Formation Control of Swarms with Non-Holonomic Agents Using Potential Functions and Sliding Mode Techniques ∗† , 2007 .

[19]  Jianhua Wu,et al.  Dynamic Obstacle Avoidance for an Omnidirectional Mobile Robot , 2010, J. Robotics.

[20]  Thomas Stastny,et al.  Collision and Obstacle Avoidance in Unmanned Aerial Systems Using Morphing Potential Field Navigation and Nonlinear Model Predictive Control , 2015 .

[21]  Antonio Sgorbissa,et al.  Real-Time Path Generation and Obstacle Avoidance for Multirotors: A Novel Approach , 2018, J. Intell. Robotic Syst..

[22]  Fuchun Sun,et al.  Decentralized UAV formation tracking flight control using gyroscopic force , 2009, 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.

[23]  Chengdong Li,et al.  Leader‐Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer , 2016 .

[24]  Banavar Sridhar,et al.  Effects of conflict resolution maneuvers and traffic density on free flight , 1996 .

[25]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[26]  Min-Jea Tahk,et al.  UAV collision avoidance based on geometric approach , 2008, 2008 SICE Annual Conference.

[27]  Jianqiao Yu,et al.  Path Planning for Multi-UAV Formation , 2015, J. Intell. Robotic Syst..

[28]  Yuanchang Liu,et al.  A survey of formation control and motion planning of multiple unmanned vehicles , 2018, Robotica.

[29]  Leal K. Lauderbaugh,et al.  Formation Specification for Control of Active Agents Using Artificial Potential Fields , 2019, J. Intell. Robotic Syst..

[30]  Wen-Hua Chen,et al.  Worst-case analysis of moving obstacle avoidance systems for unmanned vehicles , 2014, Robotica.

[31]  Aria Alasty,et al.  Stability Analysis of Robotic Swarm With Limited Field of View , 2007 .

[32]  T Abdulmuttalib,et al.  A Survey of Multi-mobile Robot Formation Control , 2019, International Journal of Computer Applications.

[33]  Kemal E. Tepe,et al.  Survey of Multi-agent Communication Strategies for Information Exchange and Mission Control of Drone Deployments , 2019, J. Intell. Robotic Syst..

[34]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[35]  Veysel Gazi,et al.  Swarm Tracking Using Artificial Potentials and Sliding Mode Control , 2007 .

[36]  Seiichi Shin,et al.  Decentralized Control of Autonomous Swarm Systems Using Artificial Potential Functions: Analytical Design Guidelines , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[37]  Dongkyoung Chwa,et al.  Decentralized behavior-based formation control of multiple robots considering obstacle avoidance , 2018, Intell. Serv. Robotics.

[38]  Aria Alasty,et al.  Leader connectivity management and flocking velocity optimization using the particle swarm optimization method , 2012 .