Poly(diketopyrrolopyrrole‐benzothiadiazole) with Ambipolarity Approaching 100% Equivalency

As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] (PDTDPP‐alt‐BTZ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (▴e = 0.09 cm2V−1s−1) and holes (▴h = 0.1 cm2V−1s−1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ∼35 that is much higher than usually obtained values for unipolar logic.

[1]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[2]  Mm Martijn Wienk,et al.  Small band gap polymers based on diketopyrrolopyrrole , 2010 .

[3]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[4]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor−Acceptor Copolymers , 2009 .

[5]  Shinuk Cho,et al.  Enhanced Performance of Fullerene n‐Channel Field‐Effect Transistors with Titanium Sub‐Oxide Injection Layer , 2009 .

[6]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[7]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[8]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[9]  Thuc‐Quyen Nguyen,et al.  Electronic Properties at Gold/Conjugated‐Polyelectrolyte Interfaces , 2009 .

[10]  Shinuk Cho,et al.  Effect of substituted side chain on donor-acceptor conjugated copolymers , 2008 .

[11]  Nelson E. Coates,et al.  Visible-near infrared absorbing dithienylcyclopentadienone-thiophene copolymers for organic thin-film transistors. , 2008, Journal of the American Chemical Society.

[12]  A. Facchetti,et al.  Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. , 2008, Journal of the American Chemical Society.

[13]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[14]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[15]  Daoben Zhu,et al.  High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes. , 2006, Journal of the American Chemical Society.

[16]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[17]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[18]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[19]  Wojciech Pisula,et al.  Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. , 2005, Journal of the American Chemical Society.

[20]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[21]  R. Lenz,et al.  20 years of DPP pigments – future perspectives , 2002 .

[22]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[23]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[24]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[25]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[26]  Yongli Gao SURFACE ANALYTICAL STUDIES OF INTERFACE FORMATION IN ORGANIC LIGHT-EMITTING DEVICES , 1999 .

[27]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[28]  Kwang-H Lee,et al.  Organic inverter using two transistors with different channel thicknesses , 2010 .