System Identification of Thermal Transfers Inside the Lungs Using Fractional Models

Abstract This paper is about fractional system identification of thermal transfers in the lungs. Usually, during open-heart surgery, an extracorporeal circulation (ECC) is carried out on the patient. In order to plug the artificial heart/lung machine on the blood stream, the lungs are disconnected from the circulatory system. No longer receiving blood, pulmonary cells die which, for the patient, may result in postoperative respiratory complications. A method to protect the lungs has been developed by surgeons and anesthetists. It is called: bronchial hypothermia. The aim is to cool the organ in order to slow down its deterioration. Unfortunately the thermal properties of the lungs are not well-known yet. Mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are very appropriate to model thermal systems (model compactness, accuracy) and the dynamic of fractal systems. Thus, this paper studies the comparison between two fractional models, a classical one and another one using the Havriliak-Negami function.

[1]  A. Oustaloup La dérivation non entière , 1995 .

[2]  Laurent Sommacal Synthèse de la fonction d'Havriliak-Negami pour l'identification temporelle par modèle non entier et modélisation du système musculaire , 2007 .

[3]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[4]  Robin De Keyser,et al.  Variable Time-Delay Estimation for Anesthesia Control During Intensive Care , 2011, IEEE Transactions on Biomedical Engineering.

[5]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[6]  Alain Oustaloup,et al.  Flatness control for linear fractional {MIMO} systems: thermal application , 2008 .

[7]  J. Battaglia A Modal Approach to Solve Inverse Heat Conduction Problems , 2002 .

[8]  Thierry Poinot,et al.  Fractional modelling and identification of thermal systems , 2011, Signal Process..

[9]  M. B. Subrahmanyam,et al.  An extension of the simplex method to constrained nonlinear optimization , 1989 .

[10]  Robin De Keyser,et al.  Modeling of the Lung Impedance Using a Fractional-Order Ladder Network With Constant Phase Elements , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Alain Oustaloup,et al.  Instrumental variable method with optimal fractional differentiation order for continuous-time system identification , 2009 .

[12]  Auke Jan Ijspeert,et al.  FRACTIONAL MULTI-MODELS OF THE GASTROCNEMIUS FROG MUSCLE , 2006 .

[13]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[14]  Alain Oustaloup,et al.  Orthonormal basis functions for modeling continuous-time fractional systems 1 , 2003 .

[15]  Daniel John Woods,et al.  An interactive approach for solving multi-objective optimization problems (interactive computer, nelder-mead simplex algorithm, graphics) , 1985 .

[16]  J. Cabelguen,et al.  Study of the peroneus digiti quarti muscle length effect on a motor unit fractional multi-model , 2010, Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.

[17]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[18]  Auke Jan Ijspeert,et al.  Improvement of the muscle fractional multimodel for low-rate stimulation , 2007, Biomed. Signal Process. Control..

[19]  A. Oustaloup Représentation et identification par modèle non entier , 2005 .

[20]  A. Ijspeert,et al.  Fractional Multimodels of the Gastrocnemius Muscle for Tetanus Pattern , 2007 .