Power laws in complex graphs: parsimonious generative models, similarity testing algorithms, and the origins

POWER LAWS IN COMPLEX GRAPHS: PARSIMONIOUS GENERATIVE MODELS, SIMILARITY TESTING ALGORITHMS, AND THE ORIGINS

[1]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[2]  Patrick McDonald,et al.  Isospectral polygons, planar graphs and heat content , 2003 .

[3]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[4]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[5]  Shan Lu,et al.  Poisson Process Driven Stochastic Differential Equations for bivariate heavy tailed distributions , 2016, 2016 American Control Conference (ACC).

[6]  Michael Mitzenmacher,et al.  Dynamic Models for File Sizes and Double Pareto Distributions , 2004, Internet Math..

[7]  Ankur P. Parikh,et al.  Algorithms for Graph Similarity and Subgraph Matching , 2011 .

[8]  G. Caldarelli,et al.  The fractal properties of Internet , 2000, cond-mat/0009178.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  R. P. Millane,et al.  Scaling and Power Spectra of Natural Images , 2003 .

[11]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[12]  William J. Reed,et al.  A parametric model for income and other size distributions and some extensions , 2006 .

[13]  W. Reed,et al.  POWER-LAW DISTRIBUTIONS FROM EXPONENTIAL PROCESSES : AN EXPLANATION FOR THE OCCURRENCE OF LONG-TAILED DISTRIBUTIONS IN BIOLOGY AND ELSEWHERE , 2003 .

[14]  David Mumford,et al.  Pattern Theory: the Mathematics of Perception , 2002, math/0212400.

[15]  Donald F. Towsley,et al.  Complex network comparison using random walks , 2014, WWW '14 Companion.

[16]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[17]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[18]  Donald F. Towsley,et al.  Nonstandard regular variation of in-degree and out-degree in the preferential attachment model , 2014, Journal of Applied Probability.

[19]  W. Reed,et al.  From gene families and genera to incomes and internet file sizes: why power laws are so common in nature. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[21]  Vishal Misra,et al.  A hierarchical model for teletraffic , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[22]  Donald F. Towsley,et al.  Self-similarity and long range dependence on the internet: a second look at the evidence, origins and implications , 2005, Comput. Networks.

[23]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[24]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[25]  Peter B. Gilkey,et al.  Heat Content Asymptotics of a Riemannian Manifold with Boundary , 1994 .

[26]  Weibo Gong,et al.  Double Pareto Lognormal Distributions in Complex Networks , 2012 .

[27]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[28]  Shan Lu,et al.  A complex network based feature extraction for image retrieval , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[29]  Bert Zwart,et al.  On a Theorem of Breiman and a Class of Random Difference Equations , 2007, Journal of Applied Probability.

[30]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[31]  David Siegmund Note on a stochastic recursion , 2001 .

[32]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[33]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[34]  Béla Bollobás,et al.  Directed scale-free graphs , 2003, SODA '03.

[35]  Hector Garcia-Molina,et al.  Web graph similarity for anomaly detection , 2010, Journal of Internet Services and Applications.

[36]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[37]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[38]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[39]  Marcos Amaku,et al.  Scale-Free Networks with the Same Degree Distribution: Different Structural Properties , 2013, ArXiv.

[40]  Donald F. Towsley,et al.  Stochastic differential equations for power law behaviors , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[41]  Rizal Setya Perdana What is Twitter , 2013 .

[42]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[43]  W. Reed The Pareto, Zipf and other power laws , 2001 .

[44]  Danah Boyd,et al.  Social Network Sites: Definition, History, and Scholarship , 2007, J. Comput. Mediat. Commun..

[45]  Tomography and Stability of Complex Networks , 2004 .

[46]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[47]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[48]  Weibo Gong,et al.  Transient response functions for graph structure addressable memory , 2013, 52nd IEEE Conference on Decision and Control.

[49]  Y. Kagan Earthquake size distribution: power-law with exponent beta=1/2 ? , 2009, 0908.1207.

[50]  Laura Zager,et al.  Graph similarity and matching , 2005 .

[51]  Weibo Gong,et al.  Can one hear the shape of a concept? , 2012, Proceedings of the 31st Chinese Control Conference.

[52]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[53]  Shan Lu,et al.  Image feature extraction based on spectral graph information , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[54]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[55]  William J. Reed,et al.  The Double Pareto-Lognormal Distribution—A New Parametric Model for Size Distributions , 2004, WWW 2001.

[56]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  S. Butler Interlacing for weighted graphs using the normalized Laplacian , 2007 .

[58]  X. Gabaix Power Laws in Economics and Finance , 2008 .

[59]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[60]  Zheng Fang,et al.  Finding statistical characteristics and similarities of substructures between knowledge networks , 2012 .

[61]  Raluca Vernic,et al.  On a Multivariate Pareto Distribution , 2009 .

[62]  Sheldon M. Ross An Elementary Introduction to Mathematical Finance: Brownian Motion and Geometric Brownian Motion , 2011 .

[63]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[64]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[65]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[66]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[67]  P. McDonald,et al.  Diffusions on graphs, Poisson problems and spectral geometry , 2002, math/0205097.

[68]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[69]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[70]  Don Towsley,et al.  On MySpace Account Spans and Double Pareto-Like Distribution of Friends , 2010, 2010 INFOCOM IEEE Conference on Computer Communications Workshops.

[71]  Ren-Raw Chen,et al.  A Constant Elasticity of Variance (CEV) Family of Stock Price Distributions in Option Pricing, Review, and Integration , 2010 .

[72]  John Geanakoplos,et al.  Power laws in economics and elsewhere , 2008 .

[73]  Luis Álvarez,et al.  The Size of Objects in Natural and Artificial Images , 1999 .

[74]  Aziz Mohaisen,et al.  Measuring the mixing time of social graphs , 2010, IMC '10.

[75]  Paul L. Krapivsky,et al.  A statistical physics perspective on Web growth , 2002, Comput. Networks.

[76]  Vishal Misra,et al.  On the tails of web file size distributions , 2001 .

[77]  S Redner,et al.  Degree distributions of growing networks. , 2001, Physical review letters.

[78]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[79]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[80]  U. Feige,et al.  Spectral Graph Theory , 2015 .